VersaPro[®] & Hyper Heat Central Ducted CONDENSER SERVICE MANUAL

Read this manual carefully before installation and keep it where the operator can easily find it for future reference.

Due to updates and constantly improving performance, the information and instructions within this manual are subject to change without notice.

Version Date: March 10, 2025 Please visit www.mrcool.com/documentation to ensure you have the latest version of this manual.

Contents

CONTENTS

1 SYSTEM OVERVIEW	
1.1 Model Reference	
1.2 External Appearance	
1.3 Dimensional Drawings	
1.4 Install Location	
1.5 Capacity Correction Factor for	Height Difference13
1.6 Noise Curves	
1.7 Refrigerant Cycle Diagrams	
1.8 Electrical Wiring Diagrams	
2 INSTALLATION	
2.1 Location Selection	
2.2 Outdoor Unit Installation	
2.3 Refrigerant Pipe Installation	
2.4 Vacuum Drying and Leakage 1	esting40
2.5 Additional Refrigerant Charge	
2.6 Piping Insulation	
2.7 Electrical Wiring	
2.8 Test Operation	
3 BASIC FUNCTIONS	
3.1 Basic Functions	
4 TROUBLESHOOTING	
4.1 Safety Caution	
4.2 Error Display (Outdoor Unit w	ith Auxiliary Board)47
4.3 Outdoor Unit Point Check Fun	ction 48
4.4 Quick Maintenance by Error C	ode 50
4.5 Troubleshooting by Error Code	e
5 TEMPERATURE SENSOR RESISTANCE	TABLE 81
5.1 Temperature Sensor Resistan	ce Value Table for TP (°C-K)81
6 SYSTEM PRESSURE TABLE	

1.1 Model Reference

Outdoor Unit Model	Capacity (Btu/h)	Power Supply
MVP-18-HP-C-230A00-O	18K Regular Heat	
MVP-24-HP-C-230A00-O	24K Regular Heat	
MVP-30-HP-C-230A00-O	30K Regular Heat	
MVP-36-HP-C-230A00-O	36K Regular Heat	
MVP-48-HP-C-230A00-O	48K Regular Heat	
MVP-60-HP-C-230A00-O	60K Regular Heat	1 Phase, 208/230V~, 60Hz
CENTRAL-24-HP-C-230B00-O	24K Hyper Heat	
CENTRAL-30-HP-C-230B00-O	30K Hyper Heat	
CENTRAL-36-HP-C-230B00-O	36K Hyper Heat	
CENTRAL-48-HP-C-230B00-O	48K Hyper Heat	
CENTRAL-60-HP-C-230B00-O	60K Hyper Heat	

1.2 External Appearance

Outdoor Unit

MVP-18-HP-C-230A00-O

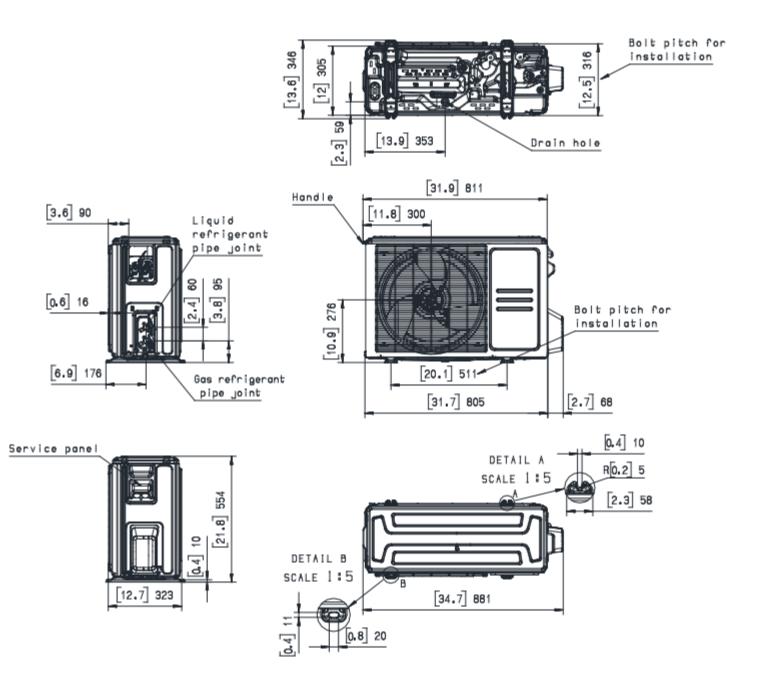
CENTRAL-24-HP-C-230B00-O/MVP-18-HP-C-230A00-O

mrcool.com

CENTRAL-36-HP-C-230B00-O/MVP-36-HP-C-230A00-O

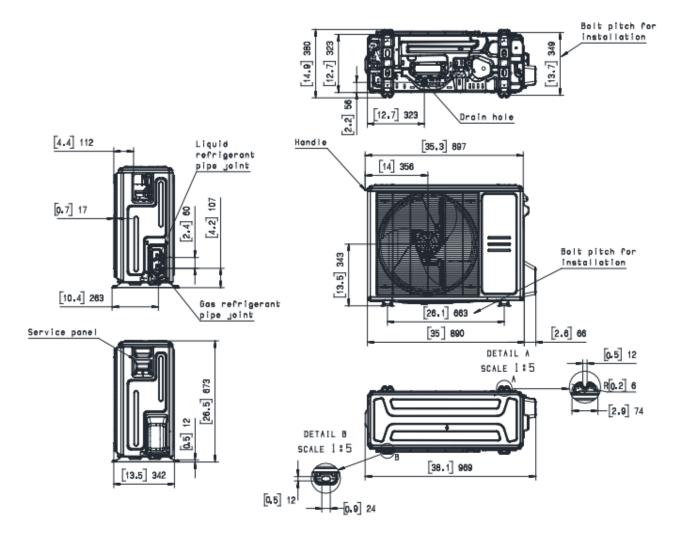
MVP-48-HP-C-230A00-O/ MVP-60-HP-C-230A00-O

CENTRAL-60-HP-C-230B00-O

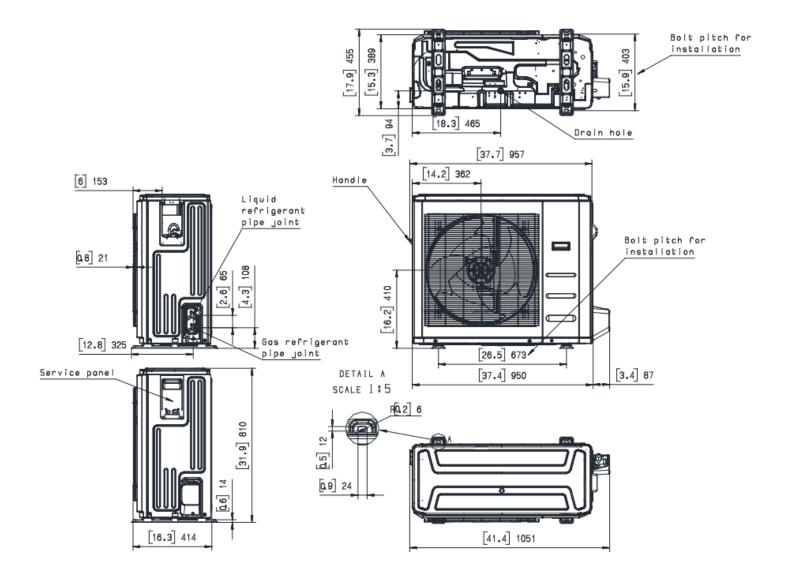

mrcool.com

1.3 Dimensional Drawings

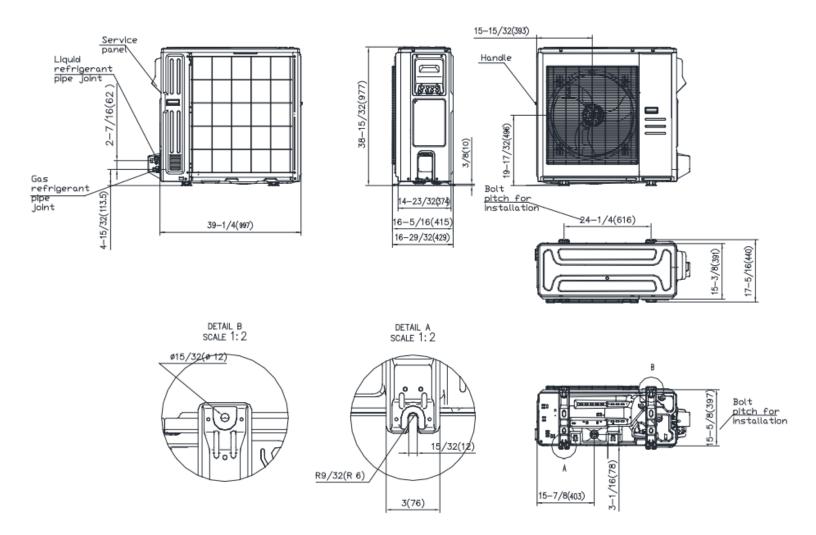
Note: Please check the corresponding dimensional drawing according to the panel plate.


Outdoor Unit Model	Platform
MVP-18-HP-C-230A00-O	X330
MVP-24-HP-C-230A00-O	X430
MVP-30-HP-C-230A00-O	D30
MVP-36-HP-C-230A00-O	D30
MVP-48-HP-C-230A00-O	X630
MVP-60-HP-C-230A00-O	X630
CENTRAL-24-HP-C-230B00-O	X430
CENTRAL-30-HP-C-230B00-O*1	D30
CENTRAL-36-HP-C-230B00-O	X630
CENTRAL-48-HP-C-230B00-O*2	X630
CENTRAL-60-HP-C-230B00-O	E30

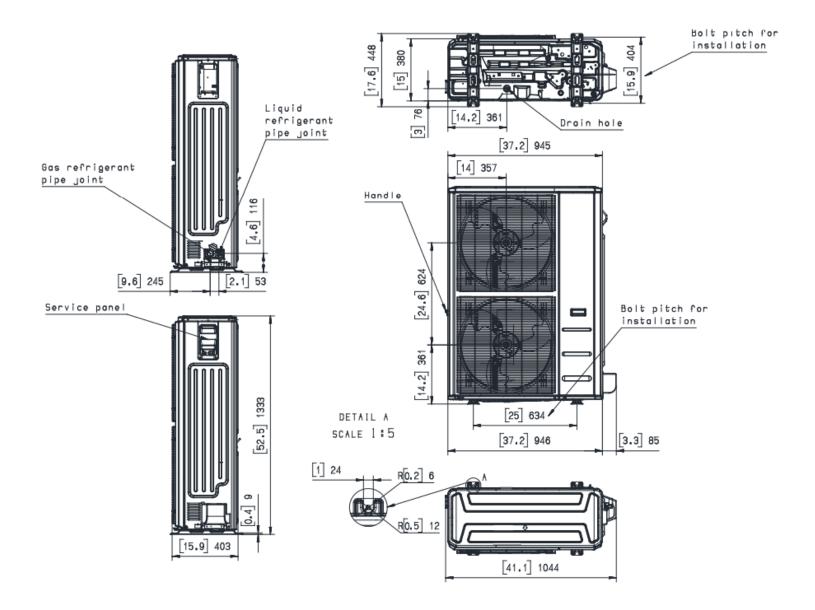
X330 Platform MVP-18-HP-C-230A00-O

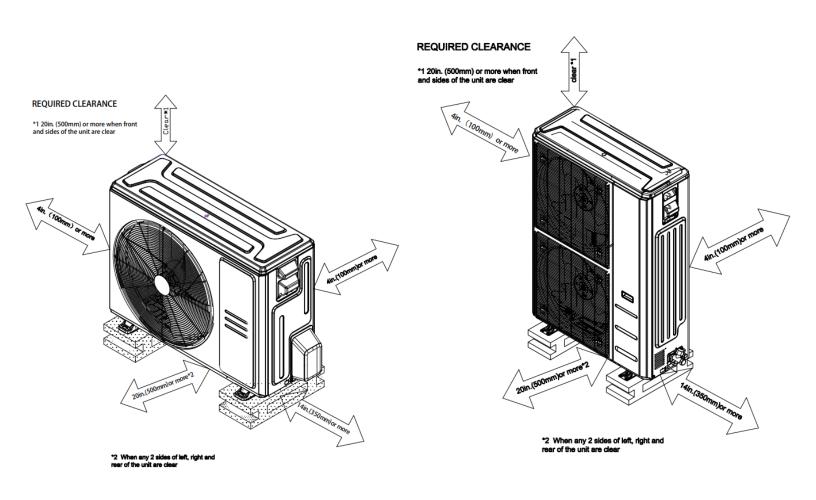


X430 Platform MVP-24-HP-C-23000-O CENTRAL-24-HP-C-230B00-O



D30 Platform MVP-30-HP-C-230A00-O MVP-36-HP-C-230A00-O CENTRAL-30-HP-C-230B00-O

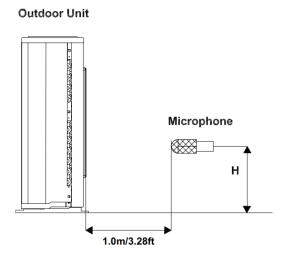



X630 Platform MVP-48-HP-C-230A00-O MVP-60-HP-C-230A00-O CENTRAL-36-HP-C-230B00-O CENTRAL-48-HP-C-230B00-O

E30 Platform CENTRAL-60-HP-C-230B00-O

1.4 Install Location

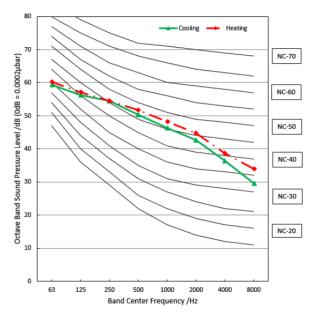
1.5 Capacity Correction Factor for Height Difference


			1			
Capacity (Btu/h)	18	lk .		Pipe Leng	sth (Ft/m)	
	Cooling		24.6/7.5	32.8/10	65.6/20	98.4/30
		65.6/20			0.941	0.191
	Indoor Higher than Outdoor	32.8/10		0.974	0.951	0.928
		16.4/5	0.995	0.983	0.960	0.937
Height difference H (ft/m)		0	1.000	0.988	0.965	0.942
		-16.4/-5	1.000	0.998	0.965	0.942
	Outdoor Higher than Indoor	-32.8/-10		0.988	0.965	0.942
		-65.6/-20			0.965	0.942
	Heating		24.6/7.5	32.8/10	65.6/20	98.4/30
		65.6/20			0.987	0.978
	Indoor Higher than Outdoor	32.8/10		0.966	0.987	0.978
		16.4/5	1.000	0.996	0.987	0.978
Height difference H (ft/m)		0	1.00	0.996	0.987	0.978
		-16.4/-5	0.992	0.988	0.979	0.970
	Outdoor Higher than Indoor	-32.8/-10		0.980	0.971	0.962
		-65.6/-20			0.963	0.955

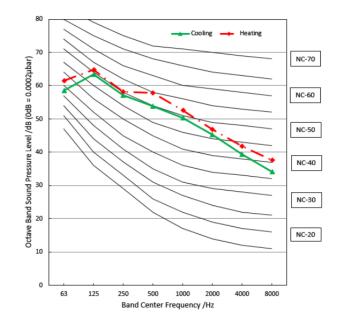
Capacity (Btu/h)		24K	Pipe Length (Ft/m)					
	Cooling			32.8/10	65.6/20	98.4/30	131.2/40	164/50
	Indoor	82/25				0.917	0.898	0.879
	Higher than	65.6/20			0.946	0.926	0.907	0.887
	Outdoor	32.8/10		0.975	0.955	0.936	0.916	0.896
Height difference H		0	1.000	0.990	0.970	0.950	0.930	0.910
(ft/m)		-16.4/-5	1.000	0.990	0.970	0.950	0.930	0.910
	Outdoor Higher	-32.8/-10		0.990	0.970	0.950	0.930	0.910
	than Indoor	-65.6/-20			0.970	0.950	0.930	0.910
	indoor	-82/-25				0.950	0.930	0.910
	Heating		24.6/7.5	32.8/10	65.6/20	9834/30	131.2/40	164/50
		82/25				0.984	0.978	0.972
	Indoor Higher	65.6/20			0.991	0.984	0.978	0.972
	than Outdoor	32.8/10		0.997	0.991	0.984	0.978	0.972
Height		16.4/5	1.000	0.997	0.991	0.984	0.978	0.972
Height difference H		0	1.000	0.997	0.991	0.984	0.978	0.972
(ft/m)		-16.4/-5	0.992	0.989	0.983	0.977	0.970	0.964
	Outdoor Higher	-32.8/-10		0.981	0.975	0.969	0.963	0.957
	Higher than Indoor	-65.6/-20			0.967	0.961	0.955	0.949
		-82/-25				0.953	0.947	0.941

Capacity (Btu/h)		30K		Pipe Length (Ft/m)							
	Cooling		24.6/7.5	32.8/10	65.6/20	98.4/30	131.2/40	164/50			
		82/25				0.891	0.862	0.832			
	Indoor Higher	65.6/20			0.930	0.900	0.871	0.841			
	Higher than	32.8/10		0.970	0.940	0.910	0.879	0.849			
	Outdoor	16.4/5	0.995	0.980	0.949	0.919	0.888	0.858			
Height difference H (ft/m)		0	1.000	0.985	0.954	0.923	0.893	0.862			
in (ioin)		-16.4/-5	1.000	0.985	0.954	0.923	0.893	0.862			
	Outdoor Higher	-32.8/-10		0.985	0.954	0.923	0.893	0.862			
	Higher than	-65.6/-20			0.954	0.923	0.893	0.862			
	Indoor	-82/-25				0.923	0.893	0.862			
	Heating		24.6/7.5	32.8/10	65.6/20	98.4/30	131.2/40	164/50			
		82/25				0.961	0.945	0.929			
	Indoor Higher	65.6/20			0.976	0.961	0.945	0.929			
	Higher than	32.8/10		0.992	0.976	0.961	0.945	0.929			
	Outdoor	16.4/5	1.000	0.992	0.976	0.961	0.945	0.929			
Height difference H (ft/m)		0	1.000	0.992	0.976	0.961	0.945	0.929			
H (IUIII)		-16.4/-5	0.992	0.984	0.969	0.953	0.937	0.922			
	Outdoor Higher	-32.8/-10		0.976	0.961	0.945	0.930	0.914			
	Higher than	-65.6/-20			0.953	0.938	0.922	0.907			
	Indoor	-82/-25				0.930	0.915	0.900			
Capacity (Btu/h)		36K			Pipe Leng	gth (Ft/m)					
	L Cooling		24.6/7.5	15/49.2	82/25	34/114.8	164/50	246/75			
		98.4/30				0.889	0.851	0.787			
	Indoor	65.6/20			0.924	0.898	0.859	0.795			
	Higher than	32.8/10		0.959	0.933	0.907	0.868	0.803			
	Outdoor	16.4/5	0.995	0.969	0.942	0.916	0.876	0.811			
Height difference H (ft/m)		0	1.000	0.974	0.947	0.921	0.881	0.815			
H (ft/m)		-16.4/-5	1.000	0.974	0.947	0.921	0.881	0.815			
	Outdoor	-32.8/-10		0.974	0.947	0.921	0.881	0.815			
	Higher than	-65.6/-20			0.947	0.921	0.881	0.815			
	Indoor	-30/-98.4				0.921	0.881	0.815			
		00,001				0.021					
	Heating		24.6/7.5	15/49.2	82/25	35/114.8	164/50	246/75			
	Incaung					0.964	0.945	0.915			
		98.4/30				0.004					
	Indoor	98.4/30 65.6/20			0.976	0.964	0.945	0.915			
	Indoor Higher than	98.4/30 65.6/20 32.8/10		0.988	0.976	ł		0.915 0.915			
	Indoor	65.6/20 32.8/10	1.000	0.988	0.976	0.964 0.964	0.945 0.945	0.915			
	Indoor Higher than	65.6/20	1.000	0.988	0.976 0.976	0.964 0.964 0.964	0.945 0.945 0.945	0.915 0.915			
Height difference H (ft/m)	Indoor Higher than	65.6/20 32.8/10 16.4/5 0	1.000	0.988 0.988	0.976 0.976 0.976	0.964 0.964 0.964 0.964	0.945 0.945 0.945 0.945	0.915 0.915 0.915			
	Indoor Higher than Outdoor Outdoor	65.6/20 32.8/10 16.4/5 0 -16.4/-5		0.988 0.988 0.980	0.976 0.976 0.976 0.968	0.964 0.964 0.964 0.964 0.956	0.945 0.945 0.945 0.945 0.938	0.915 0.915 0.915 0.908			
	Indoor Higher than Outdoor	65.6/20 32.8/10 16.4/5 0	1.000	0.988 0.988	0.976 0.976 0.976	0.964 0.964 0.964 0.964	0.945 0.945 0.945 0.945	0.915 0.915 0.915			

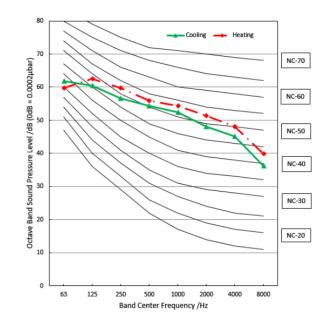
Capacity (Btu/h)		48K			Pipe Leng	gth (Ft/m)		
	Cooling		24.6/7.5	15/49.2	82/25	34/114.8	164/50	246/75
		98.4/30				0.884	0.843	0.775
	Indoor Higher than	65.6/20			0.920	0.893	0.852	0.783
	than Outdoor	32.8/10		0.957	0.930	0.902	0.860	0.791
		16.4/5	0.995	0.967	0.939	0.911	0.869	0.799
Height difference H (ft/m)		0	1.000	0.972	0.944	0.916	0.873	0.803
		-16.4/-5	1.000	0.972	0.944	0.916	0.873	0.803
	Outdoor Higher	-32.8/-10		0.972	0.944	0.916	0.873	0.803
	than Indoor	-65.6/-20			0.944	0.916	0.873	0.803
	Indoor	-30/-98.4				0.916	0.873	0.803
		•						
	Heating		24.6/7.5	15/49.2	82/25	35/114.8	164/50	246/75
		98.4/30				0.958	0.936	0.901
	Indoor Higher	65.6/20			0.972	0.958	0.936	0.901
	than Outdoor	32.8/10		0.986	0.972	0.958	0.936	0.901
	Outdoor	16.4/5	1.000	0.986	0.972	0.958	0.936	0.901
Height difference H (ft/m)		0	1.000	0.986	0.972	0.958	0.936	0.901
11 (10111)		-16.4/-5	0.992	0.978	0.964	0.950	0.929	0.894
	Outdoor Higher	-35.8/-10		0.970	0.956	0.942	0.921	0.887
	Higher than	-65.6/-20			0.949	0.935	0.914	0.880
	Indoor	-30/-98.4				0.927	0.907	0.873
Capacity (Btu/h)		60K			Pipe Leng	th (Ft/m)	•	
	Cooling		24.6/7.5	15/49.2	82/25	34/114.8	164/50	246/75
	_	98.4/30				0.870	0.823	0.743
	Indoor Higher	65.6/20			0.911	0.879	0.831	0.751
	Higher than	32.8/10		0.953	0.920	0.888	0.840	0.758
	Outdoor	16.4/5	0.955	0.962	0.930	0.897	0.848	0.766
Height difference		0	1.000	0.967	0.934	0.902	0.852	0.770
H (ft/m)		-16.4/-5	1.000	0.967	0.934	0.902	0.852	0.770
	Outdoor Higher	-32.8/-10		0.967	0.934	0.902	0.852	0.770
	than	-65.6/-20			0.934	0.902	0.852	0.770
	Indoor	-30/-98.4				0.902	0.852	0.770
		-30/-90.4						
		-30/-90.4						
	Heating	-30/-98.4	24.6/7.5	15/49.2	82/25	35/114.8	164/50	246/75
		98.4/30	24.6/7.5	15/49.2	82/25	35/114.8 0.955	164/50 0.932	246/75 0.894
	Indoor		24.6/7.5	15/49.2	82/25			
	Indoor Higher than	98.4/30	24.6/7.5	0.985		0.955	0.932	0.894
	Indoor	98.4/30 65.6/20	24.6/7.5		0.970	0.955 0.955	0.932 0.932	0.894 0.894
Height difference	Indoor Higher than	98.4/30 65.6/20 32.8/10		0.985	0.970 0.970	0.955 0.955 0.955	0.932 0.932 0.932	0.894 0.894 0.894
	Indoor Higher than Outdoor	98.4/30 65.6/20 32.8/10 16.4/5 0	1.000 1.000	0.985 0.985 0.985	0.970 0.970 0.970 0.970 0.970	0.955 0.955 0.955 0.955	0.932 0.932 0.932 0.932	0.894 0.894 0.894 0.894
Height difference	Indoor Higher than Outdoor Outdoor	98.4/30 65.6/20 32.8/10 16.4/5	1.000	0.985 0.985	0.970 0.970 0.970	0.955 0.955 0.955 0.955 0.955	0.932 0.932 0.932 0.932 0.932 0.932	0.894 0.894 0.894 0.894 0.894
Height difference	Indoor Higher than Outdoor	98.4/30 65.6/20 32.8/10 16.4/5 0 -16.4/-5	1.000 1.000	0.985 0.985 0.985 0.977	0.970 0.970 0.970 0.970 0.970 0.962	0.955 0.955 0.955 0.955 0.955 0.955 0.947	0.932 0.932 0.932 0.932 0.932 0.932 0.924	0.894 0.894 0.894 0.894 0.894 0.894 0.887


1.6 Noise Curves

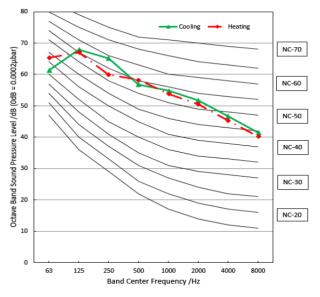
Note:H= 0.5* height of the outdoor unit.

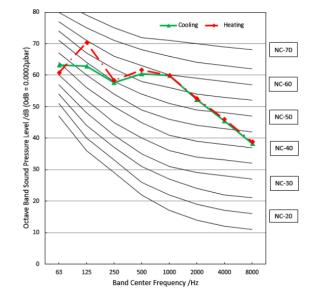

Notes:

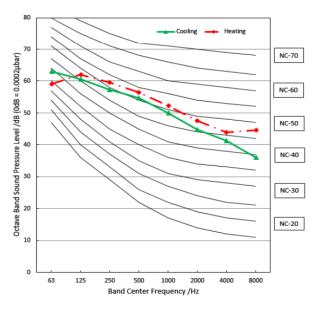
- Sound is measured at 3.25ft (1.0m) Away from center of the unit.
- Data is valid at free field condition.
- Data is valid at nominal operation condition.
- Reference acoustic pressure OdB=20µPa. Sound level will vary depending on arrange off factors such as the construction (acoustic absorption coefficient) of particular rooms in which the equipment is installed.
- The operating conditions are assumed to be standard.

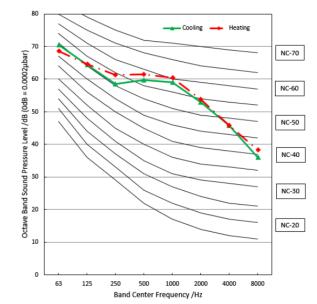


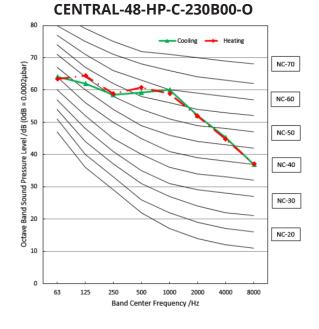
MVP-18-HP-C-230A00-0

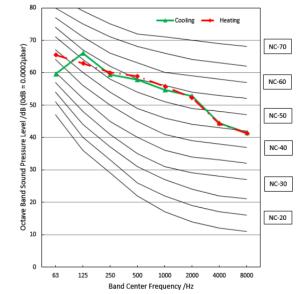

MVP-24-HP-C-230A00-0 & CENTRAL-24-HP-C-230B00-O


MVP-30-HP-C-230A00-0

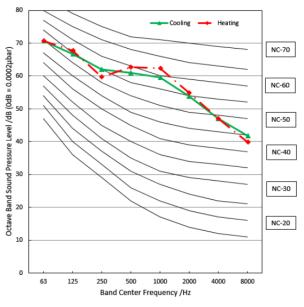

CENTRAL-30-HP-C-230B00-O


CENTRAL-36-HP-C-230B00-O

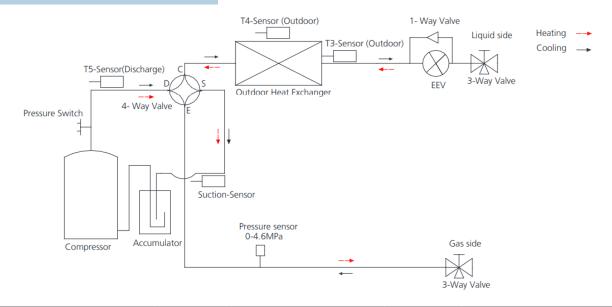

MVP-36-HP-C-230A00-O

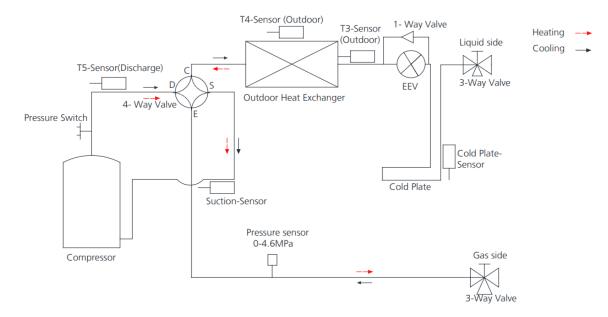


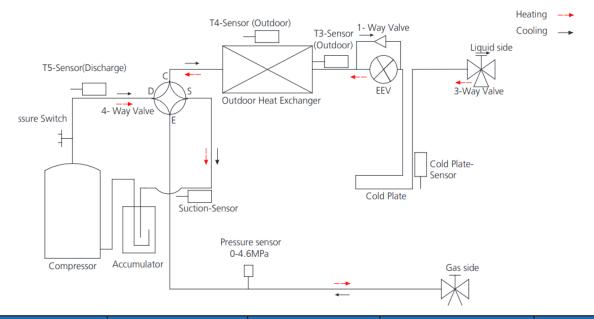
MVP-48-HP-C-230A00-O

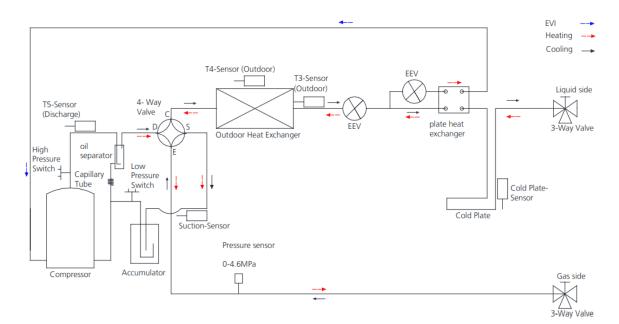


CENTRAL-60-HP-C-230B00-O



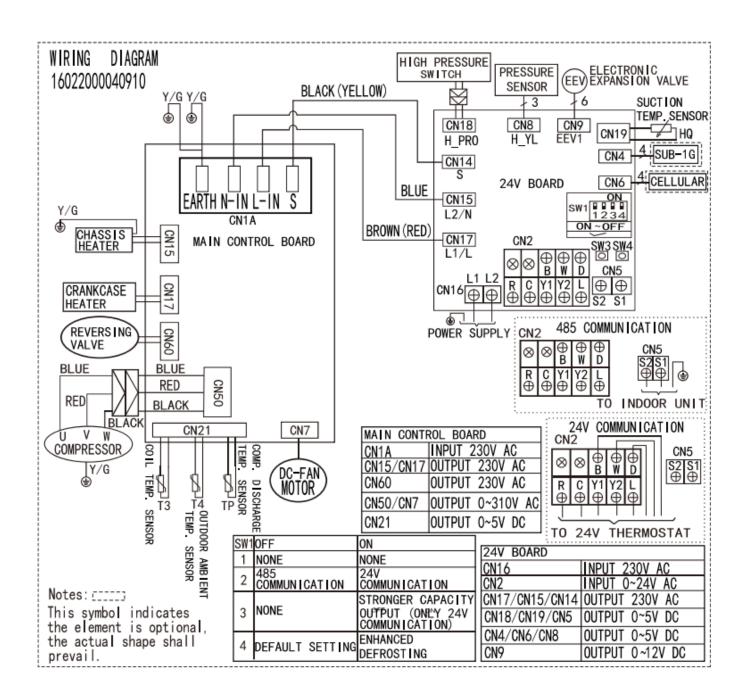

MVP-60-HP-C-230A00-O

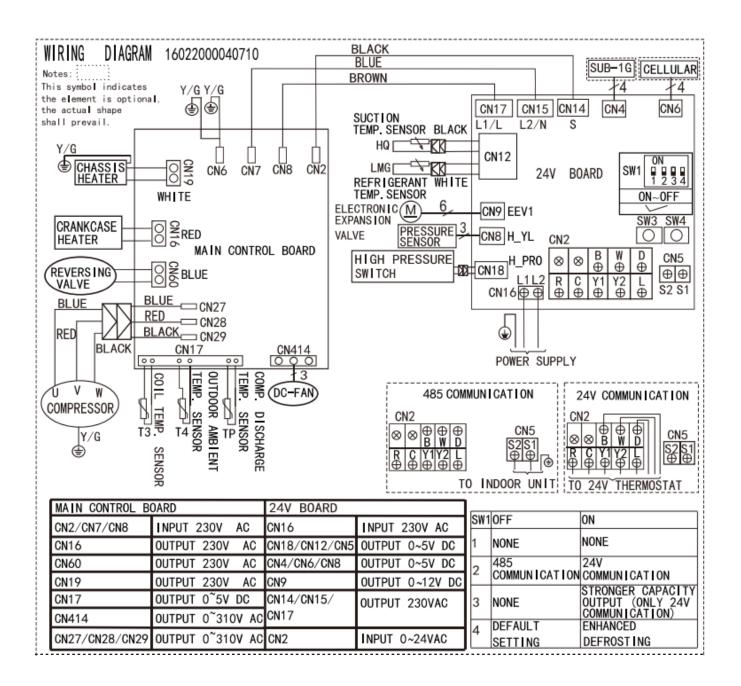

1.7 Refrigerant Cycle Diagrams

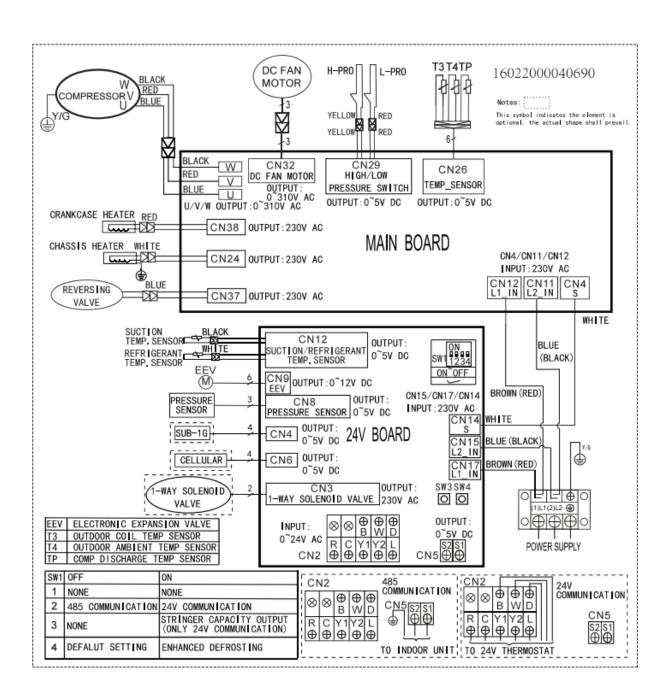

Model No.	Pipe Size Ø) ind	(Diameter: ch(mm)	Additiona		Elevation (ft/m)		Additional
	Gas	Liquid	Rated	Max.	Rated	Max.	Refrigerant
MVP-18-HP-C-230A00-O	3/4 (19)	3/8 (9.52)	24.6 (7.5)	98.4 (30)	0	65.6 (20)	0.7 oz/ft (65g/m)

Model No	Pipe Size (Ø) inc		meter: Piping Length (ft/m)		Elevation (ft/m)		Additional	
inductive.	Gas	Liquid	Rated	Max.	Rated	Max.	Refrigerant	
MVP-30-HP-C-230A00-O	3/4 (19)	3/8 (9.52)	24.6 (7.5)	164 (50)	0	82 (25)	0.7 oz/ft (65g/m)	

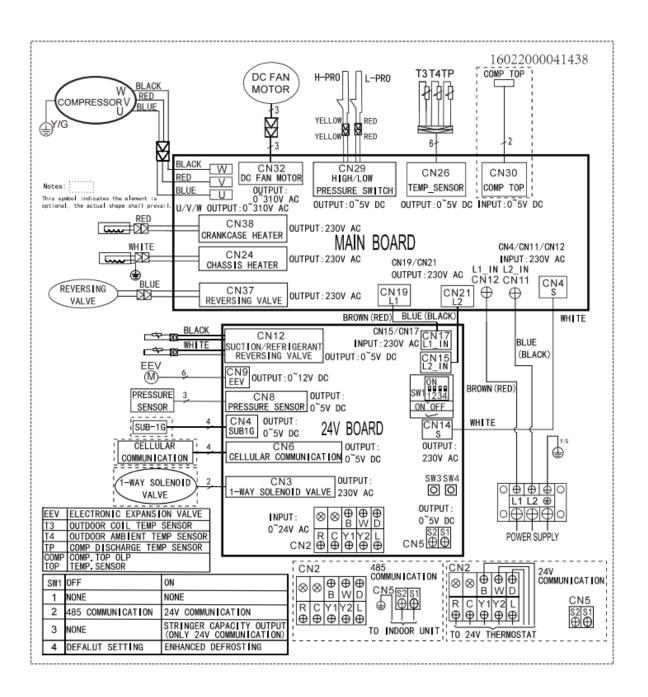
Model No.	Pipe Size Ø) in	(Diameter: ch(mm)	Piping (ft/	Length ˈm)	Elevatio	n (ft/m)	Additional
Model No.	Gas	Liquid	Rated	Max.	Rated	Max.	Refrigerant
MVP-24-HP-C-230A00-O	3/4 (19)	3/8 (9.52)	24.6 (7.5)	164 (50)	0	82 (25)	
CENTRAL-24-HP-C-230B00-O	3/4 (19)	3/8 (9.52)	24.6 (7.5)	164 (50)	0	82 (25)	
MVP-36-HP-C-230A00-O	3/4 (19)	3/8 (9.52)	24.6 (7.5)	164 (50)	0	98.4 (30)	
CENTRAL-30-HP-C-230B00-O	3/4 (19)	3/8 (9.52)	24.6 (7.5)	164 (50)	0	82 (25)	0.7 oz/ft (65g/m)
MVP-48-HP-C-230A00-O	3/4 (19)	3/8 (9.52)	24.6 (7.5)	246 (75)	0	98.4 (30)	
CENTRAL-48-HP-C-230B00-O	3/4 (19)	3/8 (9.52)	24.6 (7.5)	246 (75)	0	98.4 (30)	
MVP-60-HP-C-230A00-O	3/4 (19)	3/8 (9.52)	24.6 (7.5)	246 (75)	0	98.4 (30)	

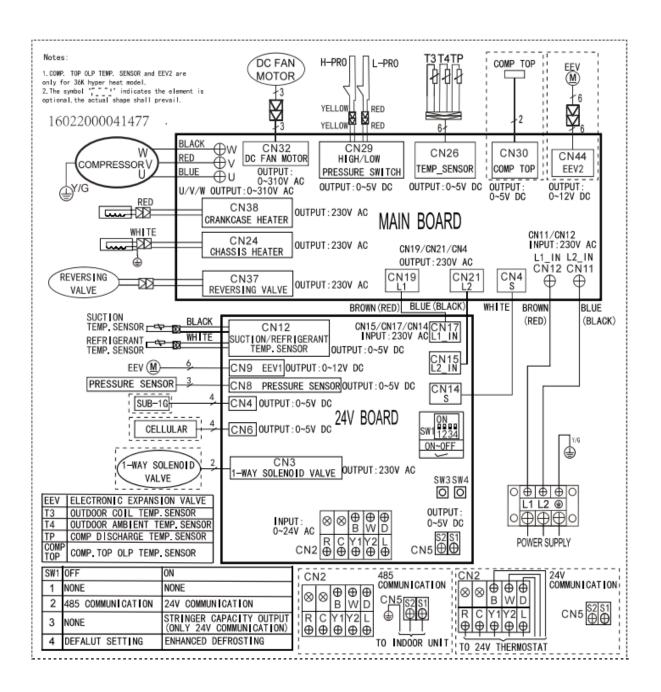


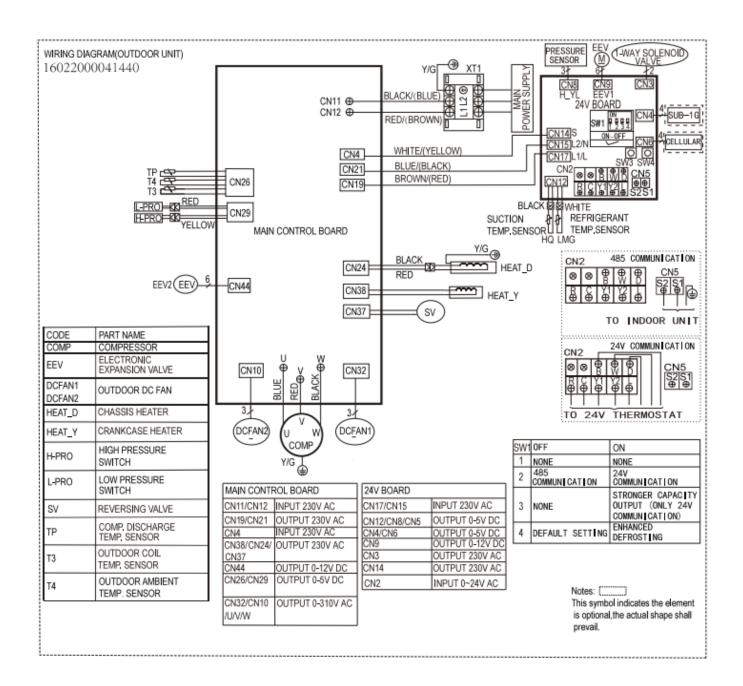

Model No.	Pip (Dian incl	e Size neter: Ø) h(mm)	Piping I (ft/	Length m)	Elevatio	on (ft/m)	Additional Refrigerant
	Gas	Liquid	Rated	Max.	Rated	Max.	
CENTRAL-36-HP-C-230B00-O	3/4 (19)	3/8 (9.52)	24.6 (7.5)	246 (75)	0	98.4 (30)	0.7 or $/ft$ ((Eq. (m))
CENTRAL-60-HP-C-230B00-O	3/4 (19)	3/8 (9.52)	24.6 (7.5)	246 (75)	0	98.4 (30)	0.7 oz/ft (65g/m)


mrcool.com

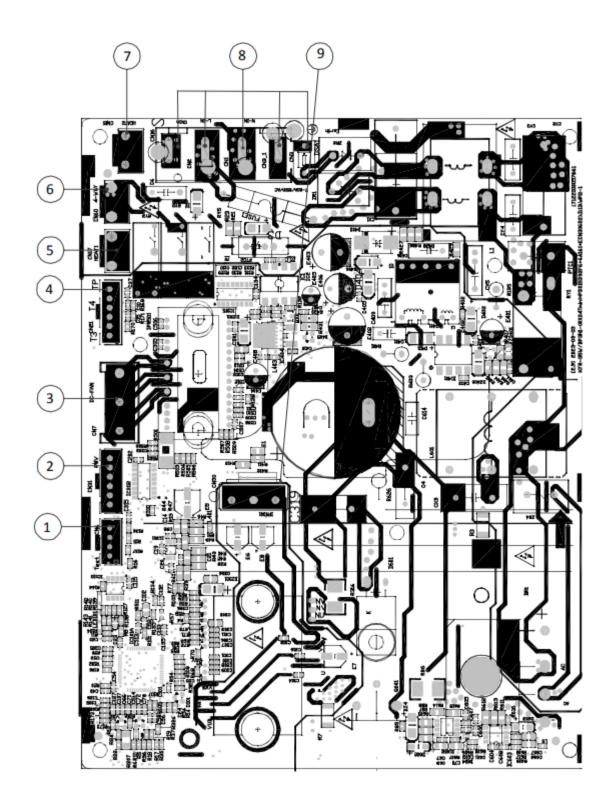
1.8 Electrical Wiring Diagrams


ODU Model	ODU Wiring Diagram	ODU Main Printed Circuit Board	24V Printed Board
MVP-18-HP-C-230A00-O	16022000040910	171220000457661	
MVP-24-HP-C-230A00-O	16022000040710	17122000048064	
CENTRAL-24-HP-C-23000-O	16022000040710	17122000048064	
MVP-30-HP-C-230A00-O	16022000040690		
MVP-36-HP-C-230A00-O	16022000041438		17122000062325
CENTRAL-30-HP-C-23000-O	16022000041438		
CENTRAL-36-HP-C-23000-O	16022000041477	17122300007152	
MVP-48-HP-C-230A00-O	16022000041477	17122300007132	
CENTRAL-48-HP-C-23000-O	16022000041477		
MVP-60-HP-C-230A00-O	16022000041438		
CENTRAL-60-HP-C-23000-O	16022000041440		

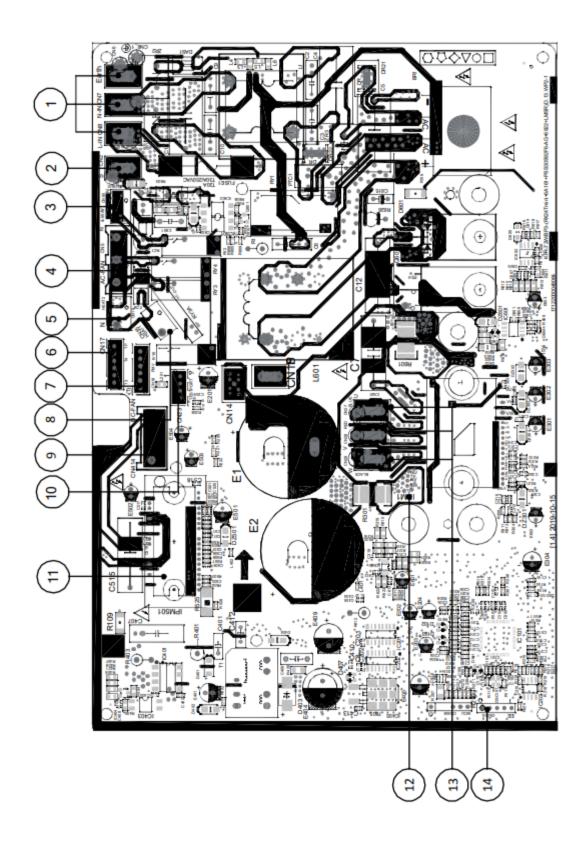




mrcool.com

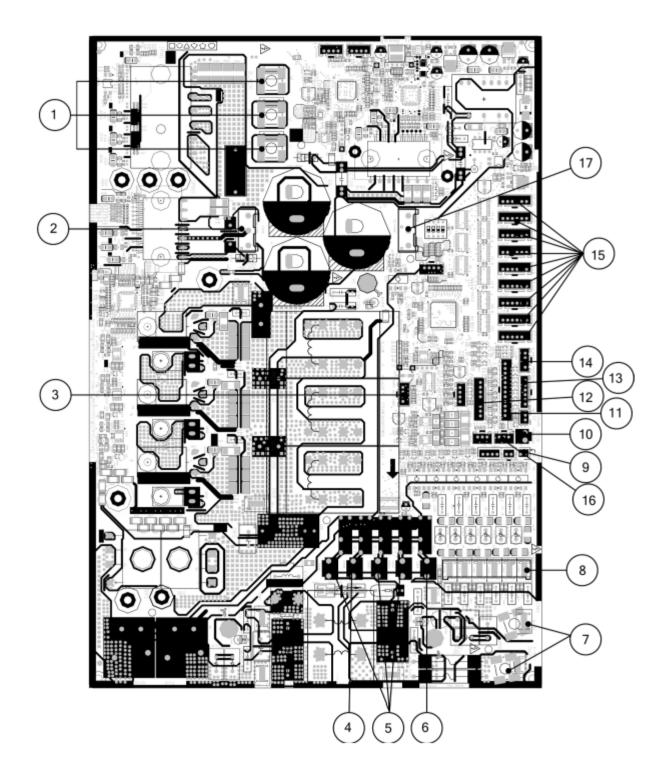


mrcool.com


Outdoor unit printed circuit board diagram: 17122000057661

No.	Name	NC#	Meaning
1	TESTPORT	CN6	Used for testing (Output: 0-5VDC)
2	PMV	CN31	Connects to electric expansion valve (Output: 0~2VDC)
3	DC-FAN	CN7	Connects to DC fan (Output: 0~310VAC)
4	TP T4 T3	CN21	Connect to pipe temp. sensor T3, ambient temp. sensor T4, exhaust temp. sensor TP (output: 0-5VDC)
5	HEAT1	CN17	Connect to compressor heater (Output: 230VAC)
6	4-WAY	CN60	Connect to 4 way valve (Output: 230VAC)
7	HEAT2	CN15	Connect to chassis heater(Output: 230VAC)
8	CN1A	/	S: connect to indoor unit communication
		/	L_in: connect to L-line (230VAC input)
		/	N_in: connect to N-line (230VAC input)
		/	Earth
9	CN50	W	
		V	Connect to compressor (Output: 0~310VAC)
		U	

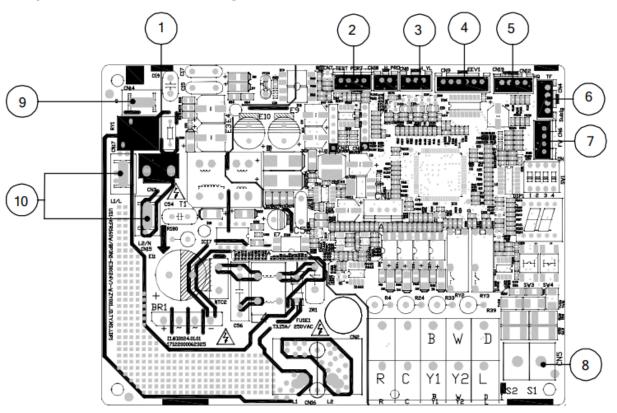
Note: This section is for reference only. Please take practicality as standard.


Outdoor unit printed circuit board diagram: 17122000048064 & 17122000048066

No.	Name	NC#	Meaning
1	Power Supply	CN6	Earth: Connect to Ground
		CN7	N_in: Connect to N-line (230VAC Input)
		CN8	L_in: Connect to L-line (230VAC input)
2	S	CN2	S: Connect to indoor unit communication (230VAC input)
3	4-WAY	CN60	Connect to 4 way valve (Output: 230VAC)
4	AC-FAN	CN5	Connect to AC fan
5	HEAT2	CN19	Connect to chassis heater (Output: 230VAC)
6	TP T4 T3	CN17	Connect to pipe temp. sensor T3, ambient temp. sensor T4, exhaust temp. sensor TP (Output: 0~5VDC)
7	PMV	CN18	Connect to Electric Expansion Valve
8	HEAT1	CN16	Connect to compressor heater (Output: 230VAC)
9	DC-FAN	CN414	Connect to DC fan (Output: 0~310VAC)
10	TESTPORT	CN23	Used for testing
11	FAN_IPM	IPM501	IPM for DC fan
12	COMP_IPM	IPM1	IPM for compressor
	U	CN27	
13	V	CN28	Connect to compressor (Output: 0~310VAC)
	W	CN29	
14	EE_PORT	CN505	EEPROM programmer port

Note: This section is for reference only. Please take practicality as standard.

Outdoor unit printed circuit board diagram: 17122300007152


No.	Name	NC#	Meaning
1	COMPRESSOR	W	
		V	Connect to compressor (Output: 0~310VAC)
		U	
2	DC-FAN1	CN32	Connect to DC fan (Output: 0~310VAC)
3	TESTPORT	CN45	Used for testing
4	HEAT_Y	CN38	Connect to compressor heater (Output: 230VAC)
		CN37	Connect to 4 way valve 1 (Output: 230VAC)
5	4-WAY	CN25	Connect to 4 way valve 2 (Output: 230VAC)
		CN42	Connect to 4 way valve 3 (Output: 230VAC)
6	HEAT_D	CN24	Connect to chassis heater (Output: 230VAC)
_		CN11	N_in: connect to N-line (230 VAC input)
7	POWER SUPPLY	CN12	L-in: connect to L-line (230VAC input)
	S-A	CN43	S: connect to indoor unit communication (230VAC input)
	S-B		
	S-C		
8	S-D		
	S-E		
	S-F		
9	TBH-IN TBH-OUT T3B TF	CN9	Connect to cold plate inlet temp.sensor TBH-IN, cold plate outlet temp. sensor TBH-OUT, condenser coil middle temp. sensor T3B, Refrigerant tube inlet temp. sensor TF
10	OLP TEMP. SENSOR	CN30	Connect to compressor top temp. sensor (Output 0~5VDC)
11	T2B	CN28	Connect to evaporator coil outlet temperature sensor T2B
12	/	CN27	Connect to key board CN1
13	ТЗ Т4 ТР	CN26	Connect to condenser coil temp. sensor T3, ambient temp. sensor T4, exhaust temp. sensor TP (Output: 0~5VDC)
14	H-PRO, L-PRO	CN29	Connect to high and low pressure switch (pin1-pin2 & pin3-pin4: 5VDC pulse wave)

No.	Name	NC#	Meaning
15	EEVA	CN17	
	EEVB	CN16	Connect to electric expansion valve (Output: 0~12VDC)
	EEVC	CN22	
	EEVD	CN14	
	EEVE	CN13	
	EEVF	CN1	
	EEV1	CN1	
	EEV2	CN44	
	EEV3	CN3	
16	H_YL	CN49	Connect to high pressure sensor
17	DC-FAN2	CN10	Connect to DC fan (Output: 0~310VAC)

Note: This section is for reference only. Please take practicality as standard.

1 SYSTEM OVERVIEW

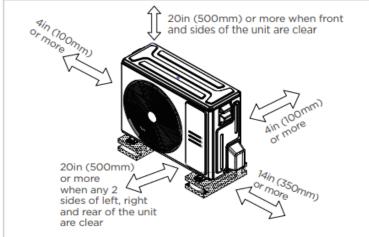
Outdoor unit printed circuit board diagram: 17122000062325

No.	Name	NC#	Meaning
1	/	CN3	Connect to one-way solenoid valve (Output: 230VAC)
2	TESTPORT	CN7	Used for testing (Output: 5VDC)
3	/	CN8	Connect to pressure sensor (Output: 0~5VDC)
4	/	CN9	Connect to electric expansion valve (Output: 0~5VDC)
5	/	CN12	Connect to suction temp. sensor, cold plate temp. sensor (Output: 0~5VDC)
6	/	CN4	Connect to SUB-1G (Output: 0~5VDC)
7	/	CN6	Connect to CELLULAR (Output: 0~5VDC)
8	S1+S2	SW5	Connect to indoor unit communication (Output: 0~5VDC)
9	S	CN14	Connect to main board S (Input: 230VAC)
10	Power Supply	CN17	Connect to main board L1-IN (Input: 230VAC)
10		CN15	Connect to main board L2/N-IN (Input: 230VAC)

2 INSTALLATION

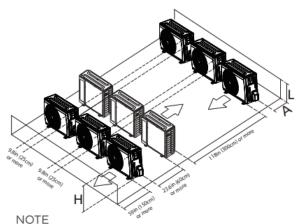
2.1 Location Selection

Name	Shape	Quantity
Drain Joint		1
Seal	\bigcirc	1


Location Selection:

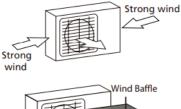
* Unit location selection can refer to the installation manual.

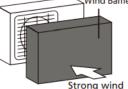
*DO NOT install the unit in the following locations:


- Near an obstacle that will block air inlets or outlets.
- Near a public street, crowded areas, or where noise from the unit will disturb others.
- Near animals or plants that will be harmed by hot air discharge.
- Near any source of combustible gas.
- In a location that is exposed to large amounts of dust.
- In a location exposed to excessive amounts of salty air.

Make sure to meet all spatial requirements shown in Installation Clearance Requirements below:

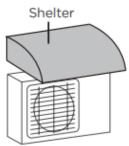
Rows of Series Installation: The relations between H, A and L are as follows:


	L	Α
I < H	L ≤ 1/2H	9.8in (25cm) or more
L > H	1/2H < L ≤ H	11.8in (30cm) or more
L>H	Cannot be installed	



H: Unit height L: Height of the wall behind the unit A: Distance between unit and wall

If the unit is exposed to heavy wind:


Install the unit so that the air outlet fan is at a 90° angle to the direction of the wind. If needed, build a barrier in front of the unit to protect it from extremely heavy winds.

If the unit is frequently exposed to heavy rain or snow:

• Build a shelter above the unit to protect it from the rain or snow. Be careful to not obstruct airflow around the unit.

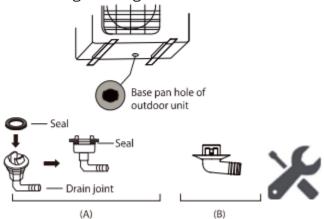
If the unit is frequently exposed to salty air (seaside):

Use an outdoor unit that is specially designed to resist corrosion.

2 INSTALLATION

2.2 Outdoor Unit Installation

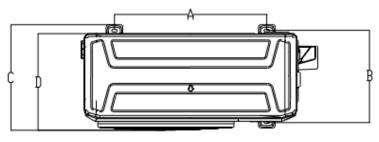
Installing Drain Joint:


Before bolting the outdoor unit in place, you must install the drain joint at the bottom of the unit. *Note: There are two different types of drain joints depending on the type of outdoor unit.*

If the drain joint comes with a rubber seal (see Fig. A), do the following:

- 1. Fit the rubber seal on the end of the drain joint that will connect to the outdoor unit.
- 2. Insert the drain joint into the hole in the base pan of the unit.
- 3. Rotate the drain joint 90° until it clicks in place facing the front of the unit. For some panel plates you will need to use a tool.
- Connect a drain hose extension (not included) to the drain joint to redirect water from the unit during heating mode.

If the drain joint doesn't come with a rubber seal (see Fig. B) do the following:


- Insert the drain joint into the hole in the base pan of the unit. The drain joint will click in place.
- 2. Connect a drain hose extension (not included) to the drain joint to redirect water from the unit during heating mode.

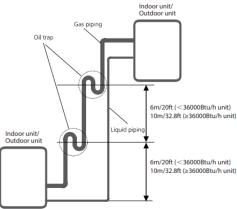
Anchor Outdoor Unit:

The outdoor unit can be anchored to the ground or to a wall-mounted bracket with bolt (M10). Prepare the installation base of the unit according to the dimensions below.

The following is a list of different outdoor unit sizes and the distance between their mounting feet.

Platform	Unit	D	Α	В	С
ХЗ	inch	12.99	20.12	12.48	13.62
^3	mm	330	511	317	346
X4	inch	13.46	26.1	13.94	15.5
A4	mm	342	663	354	394
VC	inch	14.76	24.2	15.6	17.3
X6	mm	375	615	397	440
	inch	16.14	26.50	15.87	17.9
D30	mm	410	673	403	455
E30	inch	16.34	24.96	15.9	17.99
E30	mm	415	634	404	457

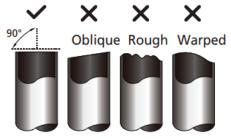
2.3 Refrigerant Pipe Installation


Maximum Length and Drop Height:

Ensure that the length of the refrigerant pipe, the number of bends, and the drop height between the indoor and outdoor units meets the requirements shown in the following table.

Capacity	Max. Length (ft/m)	Max. Elevation (ft/m)
18k	98.4/30	65.6/20
24k/30k	164/50	82/25
36k/48k/60k	246/75	98.4/30

Caution:


- 1. The capacity test is based on the standard length and maximum permissive length is based on the system reliability.
- 2. Oil traps.
 - If oil flows back into the outdoor unit's compressor, this might cause liquid compression or deterioration of oil return. Oil traps in the rising gas piping can prevent this.
 - An oil trap should be installed every 20ft (6m) of vertical suction line riser (<36kBtu/h unit).
 - An oil trap should be installed every 32.8ft (10m) of vertical suction line riser (≥36kBtu/h unit).

Procedure of Connecting Pipes:

- 1. Choose the pipe size according to the specification table.
- 2. Confirm the cross way of the pipes.

- 3. Measure the necessary pipe length.
- 4. Cut the selected pipe with a pipe cutter.
- Make the section flat and smooth.

- 5. Insulate the copper pipe.
 - Before test operation, the joint parts should not be heat insulated.
- 6. Flare the pipe.
 - Insert a flare nut into the pipe before flaring the pipe.
 - According to the following table to flare the pipe.

Pipe Diameter (inch(mm))	Flare dimension A (inch/mm)		Flare
(incn(mm))	Min	Мах	Shape
Ø3/8 (Ø9.52)	0.52/13.2	0.53/13.5	90°±4
Ø5/8 (Ø15.9)	0.76/19.2	0.78/19.7	R0.4~0.8
Ø3/4 (Ø19)	0.91/23.2	0.93/23.7	KN.4~U.8

- After flaring the pipe, the opening part must be sealed by end cover or adhesive tape to avoid dust or exogenous impurity entering the pipe.
- 7. Drill holes if the pipes need to pass the wall.
- 8. According to the field condition to bend the pipes so that it can pass the wall smoothly.
- 9. Bind and wrap the wire together with the insulated pipe if necessary.
- 10.Set the wall conduit.
- 11.Set the supporter for the pipe.
- 12. Locate the pipe and fix it by supporter.
 - For horizontal refrigerant pipe, the distance between supporters should not exceed 3.28ft (1m).
 - For vertical refrigerant pipe, the distance between supporters should not exceed 4.92ft (1.5m).
- 13.Connect the pipe to the indoor unit and outdoor unit by using two crescent wrenches.
 - Be sure to use two crescent wrenches and proper torque to fasten the nut, too much torque will damage the bell mouthing, and too little of torque may cause leakage. Refer to the following table for different pipe connections.

Pipe Diameter (inch(mm))	Torque N.m. (lb. ft.)	Sketch Map
Ø3/8 (Ø9.52)	32~39 (23.6~28.8)	
Ø5/8 (Ø15.9)	57~71 (42~52.4)	
Ø3/4 (Ø19)	67~101	
(619)	(49.4~74.5)	

2.4 Vacuum Drying and Leakage Testing

Purpose of Vacuum Drying:

• Eliminates moisture in the system to prevent the phenomena of ice-blockage and copper oxidation.

-Ice-blockages will cause abnormal operation of system while copper oxidation will damage the compressor.

• Eliminating non-condensible gas(air) in the system will prevent the components from oxidizing, pressure fluctuation, and poor heat exchange during operation of the system.

Selection of a Vacuum Pump:

- The ultimate vacuum degree of a vacuum pump shall be -756mmHg or above.
- Precision of the vacuum pump shall reach 0.02mmHg or above

Operation Procedure for Vacuum Drying:

Due to different construction environments, two kinds of vacuum drying ways could be chosen, namely ordinary vacuum drying and special vacuum drying.

Ordinary vacuum drying:

- When conducting first vacuum drying, connect a pressure gauge to the infusing mouth of gas pipe and liquid pipe and keep the vacuum pump running for 1 hour (vacuum degree of vacuum pump shall be reached at -755mmHg).
- 2. If the vacuum degree of the vacuum pump could not reach -755mmHg after 1 hour of drying it indicates that there is moisture or leakage in the pipeline of the system and needs to go on with drying for half an hour.
- If the vacuum degree of the vacuum pump still cannot reach -755mmHg after 1.5 hours of drying check to see if there is a leak.
- 4. Leakage test: After the vacuum degree reaches -755mmHg stop vacuum drying and keep the pressure for 1 hour. If the indicator of the vacuum gauge does not go up it is good. If it does go up it indicates that there is moisture or a leak.

Special Vacuum Drying:

The special vacuum drying method shall be adopted when:

- 1. Finding moisture during flushing refrigerant pipe.
- 2. Conducting construction on a rainy day (Rain water might get into pipeline).
- 3. Construction period is long (Rain water might get into pipeline).

Procedures of special vacuum drying are as follows:

- 1. Vacuum drying for 1 hour.
- 2. Vacuum damage, filling nitrogen to reach 0.5Kgf/cm².

-Because nitrogen is a dry gas, vacuum damage could achieve the of vacuum drying, but this method cannot achieve drying thoroughly when there is too much moisture. Therefore special attention shall be drawn to prevent the entering of water and the formation of condensate water. 3. Vacuum drying again for half an hour.

-If the pressure reached -755mmHg, start pressure leakage test. If it cannot reach the value, repeat vacuum damage and vacuum drying again for 1 hour.

 Leakage test: After the vacuum degree reaches -755mmHg, stop vacuum drying and keep the pressure for 1 hour. If the indicator of the vacuum gauge does not go up it is good. If it keeps going up it indicates that there is moisture or a leak.

2.5 Additional Refrigerant Charge

- After the vacuum drying process is carried out, the additional refrigerant charge process needs to be performed.
- The outdoor unit is factory charged with refrigerant. The additional refrigerant charge volume is decided by the diameter and length of the liquid pipe between the indoor and outdoor unit. Refer to the following formula to calculate the charge volume.

	Diameter of liquid pipe (inch(mm))	Formula
R545B	Ø1/4 (Ø6.35)	V=0.32(30)oz/ft(g/m)x(L- standard pipe length)
	Ø3/8 (Ø9.52)	V=0.7(65)oz/ft(g/m)x(L- standard pipe length)

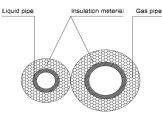
V: Additional Refrigerant charge volume. L: The length of the liquid pipe.

- Note:
 Refrigerant may only be charged after the performed vacuum drying process.
- Always use gloves and glasses to protect your hands and eyes during the charge work.
- Use electronic scale or fluid infusion apparatus to weigh the refrigerant to be charged. Be sure to avoid excess refrigerant charge, it may cause liquid hammering of the compressor.
- Use gauge hoses to connect to the refrigerant cylinder, pressure gauge, and outdoor unit (The refrigerant should be charged in a liquid state). Before recharging the air in the gauges and hoses needs to be vented.
- After finishing the refrigerant recharge process, check whether there is refrigerant leakage at the connection joints(Using a leak detector or soapy water).

2.6 Piping Insulation

Insulation of Refrigerant Pipe:

1. Operational Procedure of Refrigerant Pipe Insulation:


Cut the suitable pipe > insulation (except joint section) > flare the piping > piping layout and connection > vacuum drying > insulate joints.

- 2. Purpose of Refrigerant Pipe Insulation:
- During operation the temperature of the gas pipe and liquid pipe will be very hot/cold. Therefore insulation is necessary as without it will decrease performance and can cause the compressor to burnout.

- The gas pipe temperature is low during cooling operation, if lacking insulation it will condensate.
- The gas pipe temperature is high (generally 122°F -212°F (50°C-100°C)) in heating operating. If lacking insulation it can result in burns.
- 3. Insulation Material Selection for Refrigerant Pipes:
- Insulation should withstand 248°F (120°C)
- Choose insulation materials according to local codes.
- The thickness of the insulation layers needs to be above 10mm. If in a hot or wet environment the layer on insulation will need to be thicker.

4. Highlights of insulation construction:

 The gas pipe and liquid pipe needs to be insulated separately. (If the gas and liquid pipe were insulated together it will decrease the performance of the system).

- The insulation material at jointing pipes shall be 1.96in (5cm)~3.93in (10cm) longer than the gap of the insulation material.
- Insulation material at the joint needs to be inserted into the gap of the insulation material.
- Insulation material at the joint needs to be banded to the gap and liquid pipe tightly.
- The linking part should by glued together.
- Make sure not to bind the insulation material tightly, it can extrude air out of the material causing it to age faster.

2.7 Electrical Wiring

Highlights of Electrical Wiring:

- All wiring must comply with local and national electrical codes, regulations, and must be installed by a licensed electrician.
- All electrical connections must be made according to the Electrical Connection Diagram located on the panels of the indoor and outdoor units.
- If there is a serious safety issue with the power supply stop work immediately and explain your reasoning to the client. If required refuse to install the unit until the issue is remedied.
- Power voltage should be within 90-110% of the rated voltage. Insufficient power can cause a malfunction, electrical shock, or fire.
- Installation of a external surge protector at the outdoor disconnect is recommended.
- Install a disconnect making sure all poles have a contact separation of at least 1/8in (3mm) incorporated into the wiring. You must use an approved circuit breaker and disconnect.
- Only connect the unit to an individual branch circuit and do not connect another appliance to that circuit.
- Make sure the unit is properly grounded.
- Every wire must be firmly connected. Loose wiring can cause the terminal to overheat resulting in a malfunction or a fire.
- Do not let wires touch or rest against the refrigerant tubing, the compressor, or any moving parts.
- If installing aux. heat it must be installed at least 40in (1m) away from any combustible material.
- To avoid shock never touch electrical components after turning power off, wait 10 minutes or more before touching electrical components.
- Make sure to not cross electrical wiring with signal wiring as it can cause distortion, interference, or damage to control boards.
- Connect wiring to the outdoor unit before the indoor unit.

Table: Minimum Cross Sectional Area of Power and Signal Cables.

Rated Current of Appliance (A)	AWG
≤ 6	18
6-10	16
10-16	14
16-25	12
25-32	10

Outdoor Unit Wiring:

WARNING:

Before performing any electrical work or wiring, tun off the main power to the system.

- 1. Prepare the cable for connection
- A. First choose the right cable size (choose the cable type according to local electrical codes and regulations).
- B. The size of the power supply cable, signal cable, fuse, and switch needed is determined by the Minimum Circuit Ampacity of the unit. The Minimum Circuit Ampacity is indicated on the nameplate located on the side panel of the unit. Refer to this nameplate to choose the right cable, fuse, or switch.
- C. Using wire strippers, strip the rubber jacket from both ends of the signal cable to revel approximately 5.9in (150mm) of wire.
- D. Strip the insulation from the ends.

E. Using a wire crimper, crimp u-lugs on the ends. Note: When connecting wires, strictly follow the wiring diagram found inside the electrical cover.

- Remove the 2 screws fixed on the front right panel then take it down to perform wire connection (for double fan outdoor units). Unscrew the big handle and remove it (for single fan outdoor units).
- 3. Connect the u-lugs to the terminals and match the wire colors/labels with the labels on the terminal black. Firmly screw the u-lug of each wire to its corresponding terminal.
- 4. Clamp down the cable with the cable clamp.
- Insulate unused wires with electrical tape. (Keep wires away from any electrical metal or parts).
- 6. Re-install the cover of the electrical panel.

2.8 Test Operation

- 1. The test operation must be carried out after the installation has been completed.
- 2. Please confirm the following points before the test operation.
- The indoor and outdoor unit are installed properly.
- Piping and wiring are properly connected.
- Make sure that there are no obstacles near the inlet and outlet of the unit that might cause poor performance or malfunction.
- The refrigerant system has no leaks.
- The drainage system is clear and draining to a safe location.
- The heating insulation is properly installed.
- The grounding wires are properly connected
- The length of the piping and the added refrigerant capacity has been recorded.

• Power voltage is correct for the system. **CAUTION: Failure to perform the test run may result in system damage, property damage, or personal injury.**

3. Test run instructions.

- A. Open both the liquid and gas valves.
- B. Turn ON the main power and allow the unit to warm up.
- C. Set the air conditioner to COOL mode and check the following points:

Indoor unit

- Double check to see if the room temperature is being registered correctly.
- Ensure the manual buttons on the indoor unit work properly.
- Check to see that the drainage system is clear and draining smoothly.
- Ensure there is no vibration or abnormal noise during operation.

Outdoor Unit

- Check to see if the refrigeration system is leaking.,
- Make sure there is no vibration or abnormal noise during operation.
- Ensure the wind, noise, and water generated by the unit do not disturb your neighbors or pose a safety hazard.

4. Drainage test

- A. Ensure the drain pipe flows smoothly. New buildings should perform this test before finishing the ceiling.
- B. Turn on the main power and run the unit in COOL mode.
- C. Check to see that the water is discharged. It may take up to one minute before the unit begins to drain depending on the drain pipe.
- D. Stop the unit (turn off power and reinstall the test cover).

3 BASIC FUNCTIONS

3.1 Basic Functions

Unit Element Abbreviations:

Abbreviation	Element
T1	Indoor room temperature sensor
T2	Evaporator coil temperature sensor
T3	Condenser coil temperature sensor
T4	Outdoor ambient temperature sensor
Tsc	Adjusted setting of temperature
TP	Compressor discharge temperature sensor
CDIFTEMP	Cooling shutdown temperature
HDIFTEMP2	Heating shutdown temperature
TCDI1	Enter defrost temperature
TCDE1	Exit defrost temperature 1
TCDE2	Exit defrost temperature2 (maintain for a period of time)
TIMING_ DEFROST_ TIME	Enter defrost time
EE_TIME_ DEFROST7_ STRONG	Enter enhanced defrost time
TCDE1_ADD_ STRONG	Exit enhanced defrost temperature 1
TCDE2_ADD_ STRONG	Exit enhanced defrost temperature 2 (maintain for a period of time)

In this manual, such as CDIFTEMP, HDIFTEMP2, TCDE1, TCDE2, TIMING_DEFROST_TIME...ect, they are well-setting parameter of EEPROM.

Fan Mode:

When fan mode is activated:

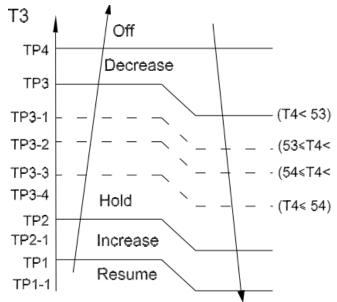
• The outdoor fan and compressor are stopped.

Cooling Mode: Compressor Control:

Reach the configured temperature

- 1. When the compressor runs continuously for within 120 minutes.
 - If the following conditions are satisfied, the compressor ceases operation.

- Indoor room temperature (T1) is lower than or equal to (Tsc-CDIFTEMP-32.9°F (0.5°C)).
- 2. When the compressor runs continuously for more than 120 minutes.
 - If the following conditions are satisfied, the compressor ceases operation.
 - Calculated frequency(FB) is less than minimum limited frequency(FminC).
 - Compressor runs at FminC more than 10 minutes.
 - When indoor room temperature (T1) is lower than or equal to (Tsc-CDIFTEMP).


Note: CDIFTEMP is EEPROM setting parameter. It is 35.6°F (2°C) usually.

- 3. If one of the following conditions is satisfied, not judge protective time.
 - Compressor running frequency(fr) is more than test frequency (TestFre).
 - Compressor running frequency is equal to test frequency, T4 is more than 59°F (15°C) or T4 fault.
 - Change setting temperature.
 - Turn on/off turbo or sleep function.
 - Various frequency limit shutdown occurs.

Outdoor Fan Control:

- The outdoor unit will be run at different fan speeds according to T4 and compressor running frequency.
- For different outdoor units, the fan speeds are different.

Condenser Temperature Protection:

3 BASIC FUNCTIONS

Heating Mode: Compressor Control:

- 1. Reach the configured temperature.
- If the following conditions are satisfied, the compressor ceases operation.
 - Calculated frequency(fb) is less than minimum limit frequency(FminH).
 - Compressor runs at FminH more than 10 minutes.
 - T1 is higher than or equal to Tsc+ HDIFTEMP2.

Note: HDIFTEMP2 is EEPROM setting parameter. It is 35.6°F (2°C) usually.

- If one of the following conditions is satisfied, do not judge protective time.
- Compressor running frequency(fr) is more than test frequency(TestFre).
- When compressor running frequency is equal to test frequency, T4 is more than 59°F (15°C) or T4 fault.
- Change setting temperature.
- Turn on/off turbo or sleep function.
- 2. When the current is higher than the predefined safe value, surge protection is activated, causing the compressor to cease operations.

Outdoor Fan Control:

- The outdoor unit will be run at different fan speeds according to T4 and compressor running frequency.
- For different outdoor units, the fan speeds are different.

Defrosting Mode:

- The unit enters defrosting mode according to the temperature value of condenser temperature (T3) and outdoor ambient temperature (T4) as well as the compressor running time.
- In defrosting mode the compressor continues to run, the indoor and outdoor motor will cease operation and the defrost light of the indoor unit will turn on then the "ar" symbol is displayed.
- If any one of the following conditions is satisfied, system will end the defrosting mode.
- T3 rises above TCDE1.
- T3 maintained above TCDE2 for 80 seconds.
- Unit runs for 15 minutes consecutively in defrosting mode.
- If Outdoor ambient temperature (T4) is lower than or equal to -7.6°F (-22°C) and compressor running time is more than TIMING_DEFROST_ TIME. If any one of the following conditions

is satisfied, defrosting ends and the machine switches to normal heating mode:

- Unit runs for 10 minutes consecutively in defrosting.
- Condenser temperature (T3) rises above 50°F (50°C).
- If any one of the following conditions is satisfied, the unit enters defrost mode.
 - If condenser temperature (T3) or outdoor ambient temperature (T4) is lower than 26.6°F (-3°C) for 30 seconds, Ts-T1 is lower than 41°F (5°C) and compressor running time is more than EE_TIME_DEFROST7_ADD.
 - If condenser temperature (T3) or outdoor ambient temperature (T4) is lower than 26.6°F (-3°C) for 30 seconds and compressor running time is more than EE_TIME_ DEFROST7_ADD+30 minutes.
- If any one of the following conditions is satisfied defrosting ends and the machine switches to normal heating mode:
- Condenser temperature (T3) rises above TCDE1+7.2°F (4°C).
- Condenser temperature (T3) maintained above TCDE2+7.2°F (4°C).
- Unit runs for 15 minutes consecutively in defrosting mode.

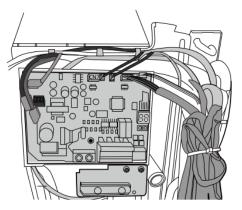
Enhanced defrosting parameter selection entrance:

- 1. 24V ODU: Determined by the SW1-4 DIP on the 24v transfer board, the DIP code selection OFF uses the default defrosting parameter, and the DIP code selects ON to adjust the following defrosting parameter values.
- 2. AHU: Enter the engineering mode, select the 27th channel, and set the enhanced defrost.

Once your choose enhanced defrosting: Defrost exit temperature 1: Replace TCDE1 with TCDE1_ADD_STRONG.

Defrost exit temperature 2: Replace TCDE2 with TCDE2_ADD_STRONG.

Defrosting enter condition 7: Compressor Cumulative Running Time: EE_TIME_DEFROST7_ ADD with EE_TIME_DEFROST7_STRONG.


4.1 Safety Caution

WARNING

Be sure to turn off all power supplies or disconnect all wires to avoid electric shock. While checking the indoor/outdoor PCB, please equip yourself with anti-static gloves or a wrist strap to avoid damaging the board.

Electricity will remain in capacitors even when the power supply is off. Ensure the capacitors are fully discharged before troubleshooting

Note: If using the inverter test tool for maintenance, remove the big handle from the unit and connect the inverter test tool to TESTPORT(CN7).

Note: This picture is for reference only. Actual appearance may vary.

4.2 Error Display (Outdoor Unit with Auxiliary Board)

Display	Error Information	Solution
DF	Defrost	Normal display, not
FC	Forced cooling	error code
EC 07	ODU Fan Speed Out of Control	TS12
EC 51	ODU EEPROM Parameter Error	TS10
EC 52	ODU coil temp. sensor (T3) Error	TS14
EC 53	ODU ambient temp. sensor (T4) Error	TS14
EC 54	COMP. Discharge Temp. Sensor (TP) Error	TS14
EC 55	ODU IPM Module Temperature Sensor Malfunction	TS33
EC 57	Refrigerant Pipe Temperature Sensor Error	TS14
EC 5C	Pressure Sensor Error	TS35
EL 01	IDU & ODU Communication Error	TS11
EL 16	Communication Malfunction between Adapter Board and ODU Main Board	TS36
PC 00	IPM Module Protection	TS17
PC 02	Compressor Top(or IPM) Temp. Protection/ Refrigerant Sensor Error	TS25
PC 06	Discharge Temperature protection of compressor	TS23
PC 08	Outdoor Overcurrent Protection	TS15
PC 0A	High Temperature Protection of Condenser	TS24
PC 0F	PFC Module Protection	TS22
PC 10	ODU Low AC Voltage Protection	TS19
PC11	ODU Main Control Board DC Bus High Voltage Protection	TS19
PC 12	ODU Main Control Board DC Bus Low Voltage Protection /341 MCE Error	TS19
PC 30	System High Pressure Protection	TS27
PC31	System Low Pressure Protection	TS29
PC40	Communication Error Between ODU Main Chip and Compressor Driven Chip	TS21
PC 41	Compressor Current Sampling Failure	TS32
PC 42	Compressor Start Failure of Outdoor Unit	TS15
PC 43	ODU Compressor Lack Phase Protection	TS31
PC 44	ODU Zero Speed Protection	TS15
PC 45	ODU IR Chip Drive Failure	TS32
PC 46	Compressor Speed has Been Out of Control	TS15
PC 49	Compressor Overcurrent Failure	TS15
LC 06	High Temperature Protection of Evaporator	TS34
PH 90	High Temperature Protection of Evaporator	TS34
PH 91	Low Temperature Protection of Evaporator	TS35

4.3 Outdoor Unit Point Check Function

- A check switch is included on the auxiliary board. Push SW4 to check the unit's status while running. The digital display shows the following codes each time the SW4 is pushed. •

Number of Presses	Display	Remark	
		Displays running frequency, running state, or malfunction code.	
00	Normal display	Defrosting mode: " dF" or alternative displays between running frequency and "dF" (ach appears for 0.5s.)	
		Actual data*HP*10	
01	Indoor unit capacity demand code	If capacity demand code is higher than 99, light the decimal point of the high digit tube. (For example, the digital display tube show "5.0", so 5.0 multiplied by 10 to become 50, then added to 100 to become 150, so actual capacity demand=150/10=15. The digital display tube show "60", so actual capacity demand=60/10=6.0)	
		GA algorithm models display ""	
02	The frequency after the capacity requirement transfer	If the value is higher than 99, light the decimal point of the high digit tube.	
		If the temp. is lower than 0°C, the digital display tube will show "0".	
03	Room temperature (T1)	If the temp. is higher than 70°C, the digital display tube will show "70".	
04	Indoor unit evaporator temperature (T2)	If the temp. is lower than -9°C, the digital display tube will show	
05	Condenser pipe temp. (T3)	"-9°C". If the temp. is higher than 70°C, the digital display tube will show "70". If the indoor unit is not connected, the digital display tube will show: "".	
06	Outdoor ambient temp. (T4)	Will Show	
07	Compressor discharge temp. (TP)	The display value is between 0~199°C. if the temp. is lower than 0°C, the digital display tube will show "0". If the temp. is higher than 99°C, light the decimal point of the high digit tube. (For example, the digital display tube show "0.5", so 0.5 multiplied by 10 to become 5 then added to 100 to become 105°C).	
08	AD value of current	The display value is a hex number.	
09	AD value of voltage	For example, the digital display tube shows "Cd", so C*16 ¹ +d*16 ⁰ =12*16+13=205, it meads AD value is 205.	
10	Indoor unit running mode code	Standburg Cooling 1 Heating 2 For only 2 Drying 4 Forced	
11	Outdoor unit running mode code	Standby:0, Cooling:1, Heating:2, Fan only:3, Drying:4, Forced cooling:6, Defrost:7, ECO:9, Forced defrosting:A, Self clean:B	
		Actual data/4	
12	EXV open angle	If the value is higher than 99, light the decimal point of the high digit tube. For example, the digital display tube show "2.0", so 2.0 multiplied by 10 to become 20, then added to 100 to become 120, it means the EXV open angle is 120x4=480p.	

Number of Presses	Display		Remark			
		Bit7	Frequency limit caused by IGBT radiator	The display value		
		Bit6	Reserved	is hex number. For example,		
		Bit5	Reserved	the digital display tube		
		Bit4	Frequency limit caused by low temperature of T2. (LH00)	show 2A, the corresponding		
13	Frequency limit symbol	Bit3	binary is 101010, so Bit5=1, Bit3=1,			
		Bit2	Frequency limit caused by TP.(LC02)	and Bit1=1.		
		Bit1	Frequency limit caused by current.(LC03)	lt means		
			Frequency limit caused by voltage.(LC05)	frequency limit caused by T3, or the current.		
14	Outdoor unit fan speed	If it is higher than 99, light the decimal point of the high digit tube. (For example, the digital display tube show "2.0", so 2.0 multiplied by 10 to become 20, then added to 100 to become 120. This value is multiplied by 8, and is the current fan speed: 120*8=960.				
15	The average value of the temperature values detected by the high and low pressure sensors in the last 10 seconds of the compressor frequency calculation period	The displayed value is the actual value plus 60 (that is, when the displayed value is 10, the actual value is -50). When the displayed value is higher than 99, light the decimal point of the high digit tube. (If it displays 2.0, so 2.0 multiplied by 10 to become 20, then added to 100 to become 120, the actual value is 60). When there is no pressure sensor, it is displayed as				
16	The temperature value detected by the high and low pressure sensor					
17	AD value detected by the high and low pressure sensor	The display value is a hex number. For example, the digital display tube shows "Cd", so C*16 ¹ +d*16 ⁰ =12*16+13=205, it meads AD value is 205. When there is no pressure sensor, it is displayed as				
18	The currently running communication protocol version	00-99				

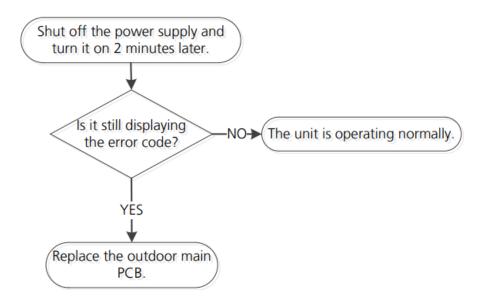
4.4 Quick Maintenance by Error Code

If you do not have the time to test which specific parts are faulty, you can directly change the required parts according to the error code. You can find the parts to replace by error code in the following table.

Part Requiring Replacement	Error Code							
Replacement	EL01	EC 51	EC52	EC 53	EC 54	EC 55	EC 5C	EC 57
Indoor PCB	\checkmark	x	х	x	x	x	х	х
Outdoor PCB	\checkmark	√	√	√	√	\checkmark	√	√
ODU Coil temp. sensor	Х	x	~	x	x	x	х	х
ODU ambient temp. sensor	х	x	х	√	x	х	x	х
COMP. discharge temp. sensor	х	x	х	x	√	х	х	х
IPM module temperature sensor	х	x	x	x	x	\checkmark	х	х
Pressure sensor	Х	х	х	х	х	х	√	х
Refrigerant pipe temperature sensor	Х	х	х	х	х	х	х	√
Condenser temperature sensor	х	x	х	х	x	х	х	х
Reactor	\checkmark	x	х	x	x	x	х	х
IPM module board	\checkmark	х	х	Х	х	Х	х	Х

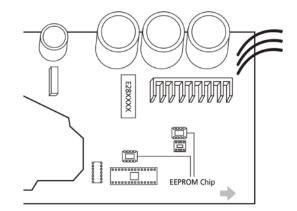
	Error Code									
Part Requiring Replacement	EC 07	PC 00	PC 10/ PC 11/ PC 12	PC 02	PC 08/ PC 42/ PC 44/ PC 46/ PC 49	PC 0F	PC 41	PH 90	PH 91	
Outdoor PCB	√	√	√	\checkmark	√	√	√	х	х	
Outdoor Fan Motor	√	√	х	Х	√	х	Х	х	х	
Reactor or inductance	Х	√	√	Х	√	√	Х	х	х	
Compressor	х	√	х	Х	х	х	Х	х	х	
IPM module board	х	√	√	Х	√	х	Х	x	х	
Bridge rectifier	х	х	х	Х	х	х	Х	~	\checkmark	
Evaporator coil temperature sensor	x	x	x	х	x	√	х	x	х	
PFC module	x	Х	x	Х	х	х	Х	x	х	
Additional refrigerant	x	Х	x	\checkmark	х	х	Х	x	х	
Overload protector	x	Х	x	Х	х	х	Х	x	х	
ODU ambient temp. sensor	x	x	x	х	x	x	х	x	x	
Refrigerant pipe temperature sensor	х	х	x	х	х	х	х	x	х	
Indoor fan	Х	х	х	Х	Х	Х	Х	√	Х	
Indoor PCB	Х	Х	Х	Х	Х	Х	Х	√	√	

Part Requiring Replacement	Error Code								
Fart Requiring Replacement	PC 40	PC 43	PC 45	PC 06	PC 0A	PC 30	PC 31	EL 16	
Outdoor PCB	\checkmark	√	x	√	√	√	√	√	
Outdoor Fan Motor	Х	х	x	х	√	√	√	x	
ODU coil temp. sensor	х	х	x	х	√	x	х	x	
COMP. discharge temp. sensor	х	x	x	√	x	x	x	x	
Compressor	Х	√	x	x	x	x	x	x	
IPM module board	х	х	√	x	x	x	x	x	
Additional refrigerant	х	х	х	√	√	х	√	x	
Electric control box	\checkmark	х	х	х	х	х	х	х	
High pressure switch	х	х	x	х	x	~	x	x	
Low pressure switch	х	х	х	х	х	х	√	x	
Adapter board	х	х	x	х	х	х	x	√	


4.5 Troubleshooting by Error Code

EC 51: ODU EEPROM parameter error diagnosis and solution:

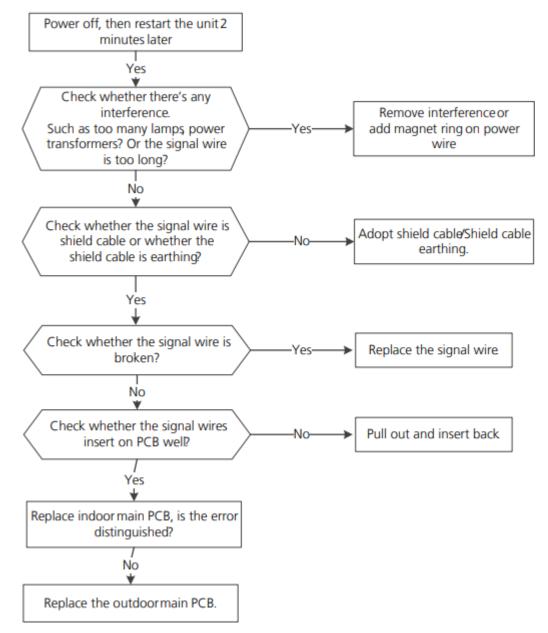
Description: Indoor or outdoor PCB main chip does not receive feedback from EEPROM chip.. **Recommended parts to prepare:**


- Indoor PCB
- Outdoor PCB

Troubleshooting and repair:

Remarks:

EEPROM: A read-only memory whose contents can be erased and reprogrammed using a puled voltage. The location of the EEPROM chip on the indoor PCB is shown in the following image:

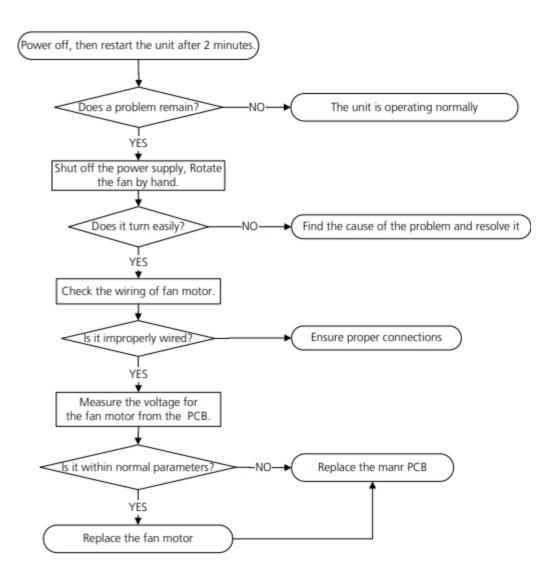


Note: These pictures are for reference, actual appearance may vary.

EL 01: IDU & ODU communication error diagnosis and solution

Recommended parts to prepare:

- Indoor PCB
- Outdoor PCB
- Signal wires
- Magnet ring

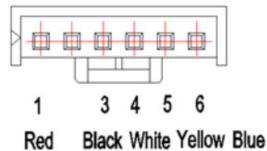


EC 07: ODU fan speed out of control diagnosis and solution

Description: When indoor/outdoor fan speed keeps too low or too high for a certain time, the LED displays the failure code and the AC turns off.

Recommended parts to prepare:

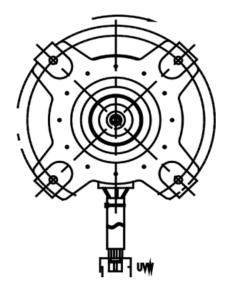
- Connection wires
- Fan assembly
- Fan motor
- PCB


Index:

1. Outdoor DC fan motor (control chip is in fan motor)

Power on and make sure the unit is in standby, measure the voltage of pin1-pin3, pin4-pin3 on the fan motor connector. If the value of the voltage is not in the range showing in the tables below, the PCB will have problems and will need to be replaced.

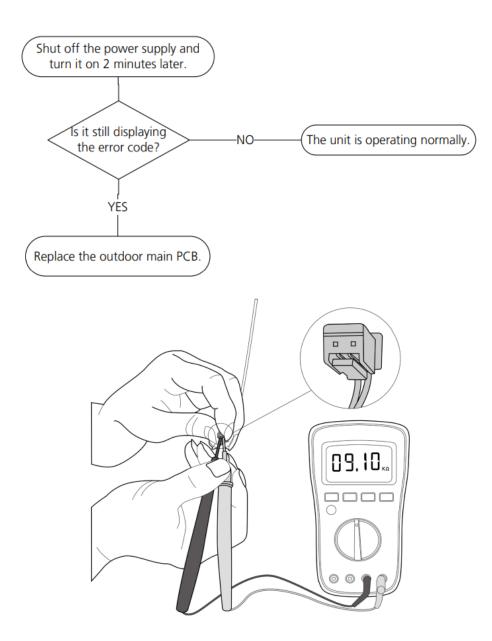
NO.	Color	Signal	Voltage
1	Red	Vs/Vm	192V~380V
2			
3	Black	GND	0V
4	White	Vcc	13.5-16.5V
5	Yellow	Vsp	0~6.5V
6	Blue	FG	13.5-16.5V
			1


DC motor voltage input and output (voltage: 220-240V~)

Index:

1. Outdoor DC fan motor (control chip is in outdoor PCB)

Release the UVW connector and measure the resistance of U-V, U-W, V-W. If the resistance is not equal to each other the fan motor has a problem and needs to be replaced. Otherwise the PCB has a problem and needs to be replaced.

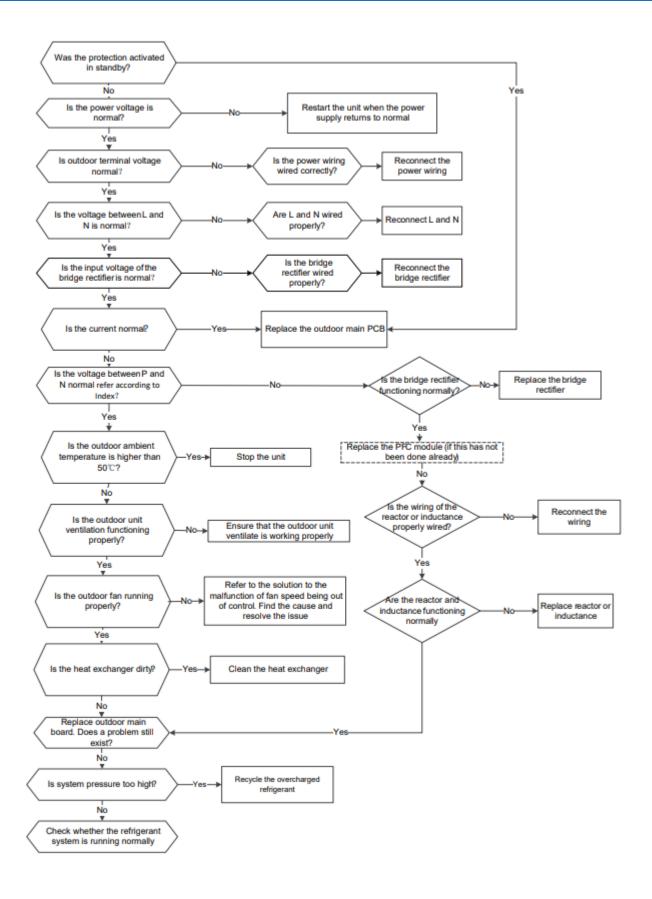

EC 52/EC 53/EC 54/EC 57: Open circuit or short circuit of temperature sensor diagnosis and solution

Description: If the sampling voltage is lower than 0.06V or higher than 4.94V, the LED displays the failure code.

Recommended parts to prepare:

- Connection wires
- Outdoor PCB
- Sensors

Troubleshooting and repair:

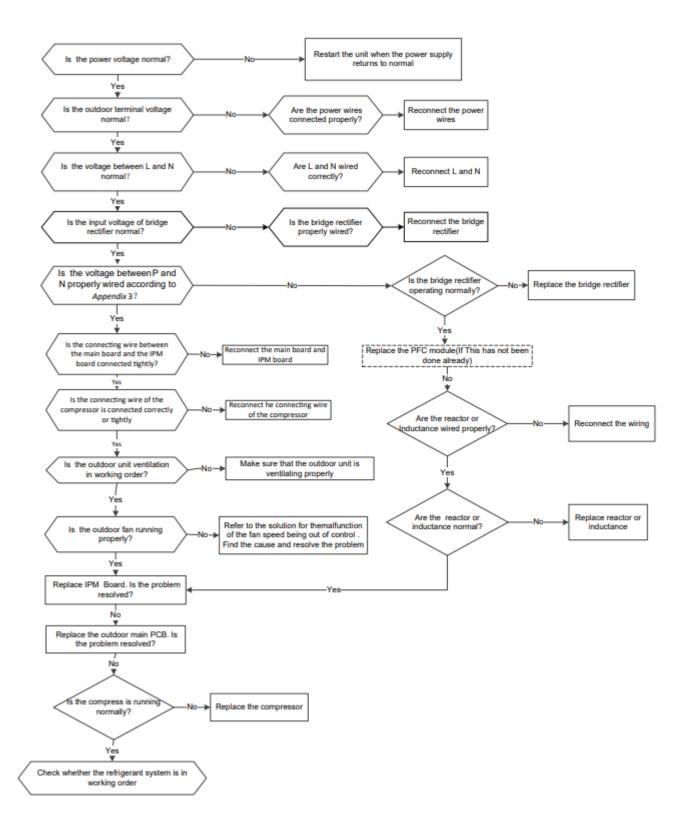

Note: The picture and the value are for reference only, actual appearance and values may vary.

PC 08: Current overload protection/ PC 42: Compressor start failure of outdoor unit/ PC 44: ODU zero speed protection/ PC 46: Compressor speed has been out of control/ PC 49: compressor overcurrent failure

Description: An abnormal current rise is detected by checking the specified current detection circuit. **Recommended parts to prepare:**

- Outdoor PCB
- Connection wires
- Bridge rectifier
- PFC circuit or reactor
- Refrigeration piping system
- Pressure switch
- Outdoor fan
- · IPM module board

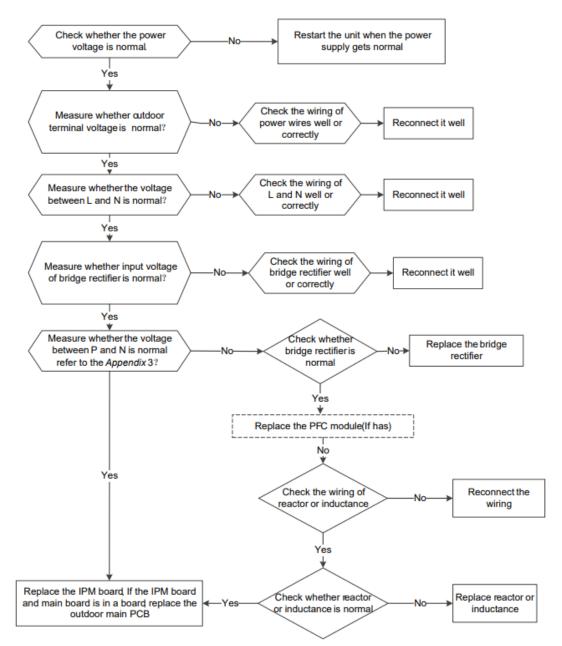
PC 00: IPM malfunction diagnosis and solution


Description: When the voltage signal the IPM sends to the compressor drive chip is abnormal, the LED displays the failure code and the AC turns off.

Recommended parts to prepare:

- Connection wires
- IPM module board
- Outdoor fan assembly
- Compressor
- Outdoor PCB
- Reactor or inductance
- Bridge rectifier

Troubleshooting and repair: At first test the resistance between every two ports of U, V, W, of IPM and P,N. If any result of them is 0 or close to 0, the IPM is defective. Otherwise please follow the procedure below:

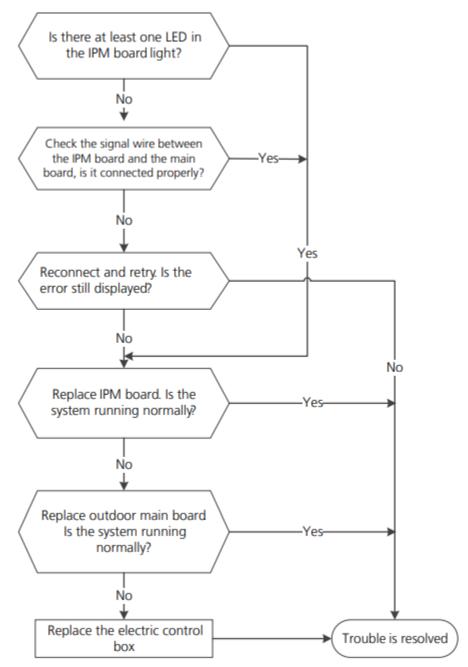

PC 10: ODU low AC voltage protection/ PC 11: ODU main control board DC bus high voltage protection/ PC 12: ODU main control board DC bus low voltage protection/341 MCE error diagnosis and solution

Description: Abnormal increases or decreases in voltage are detected by checking the specified voltage detection circuit.

Recommended parts to prepare:

- Power supply wires
- IPM module board
- Outdoor PCB
- Bridge rectifier
- PFC circuit or reactor

Troubleshooting and repair:

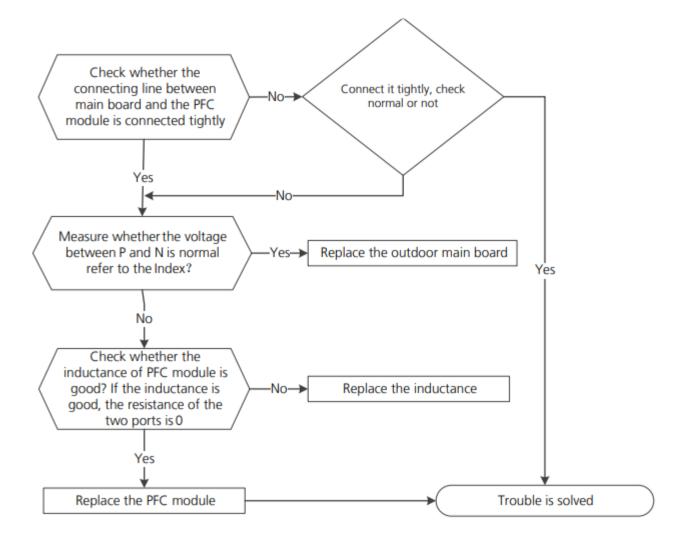

mrcool.com

PC 40: Communication error between ODU main chip and compressor driven chip diagnosis and solution

Description: The main PCB cannot detect the IPM board.

Recommended parts to prepare:

- Connection wires
- Outdoor PCB
- IPM module board
- Electric control box

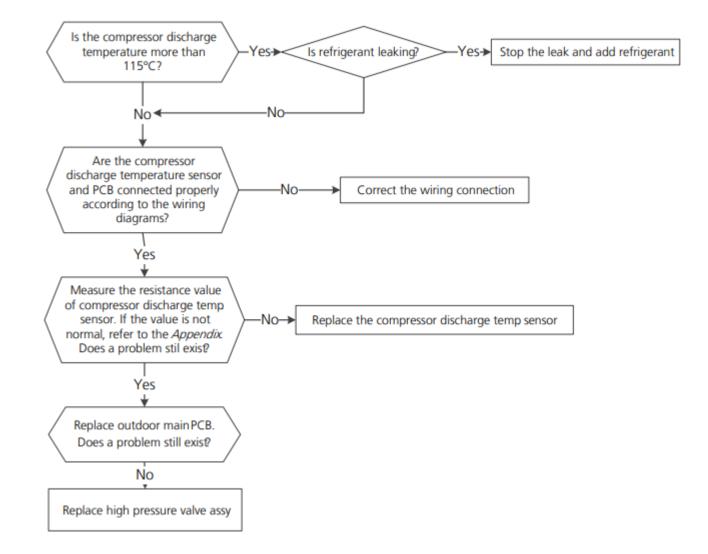


PC 0F: PFC module protection diagnosis and solution

Description: Outdoor PCB detects PFC signal is low voltage or DC voltage is lower than 340V for 6s when quick check.

Recommended parts to prepare:

- Connection wires
- Outdoor PCB
- Inductance
- PFC circuit or IPM module board

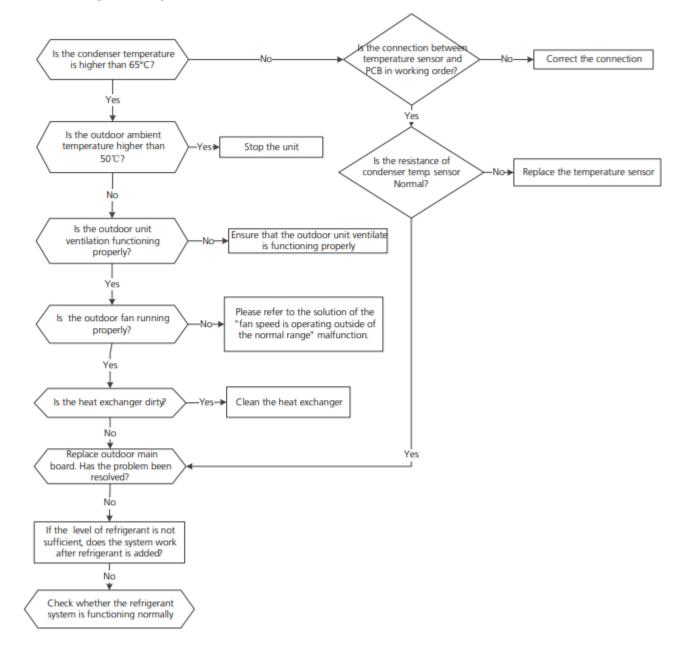


PC 06: Discharge temperature protection of compressor diagnosis and solution

Description: When the compressor discharge temperature (TP) is more than 115°C for 10 seconds, the compressor ceases operation and does not restart until TP is less than 90°C..

Recommended parts to prepare:

- Connection wires
- Outdoor PCB
- Discharge temperature sensor
- Refrigerant

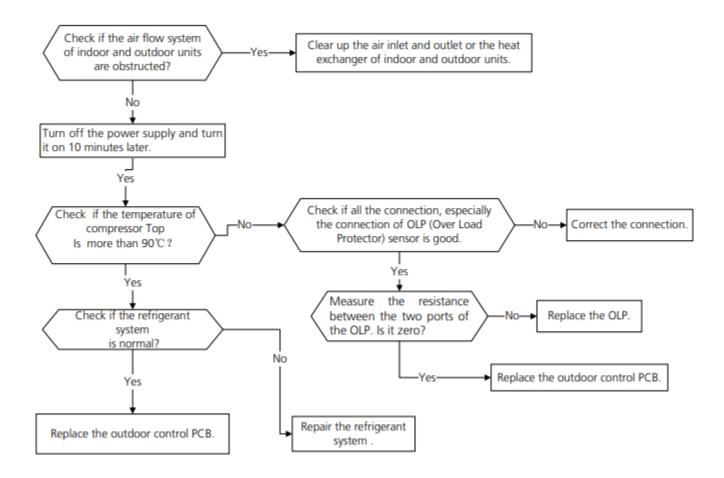


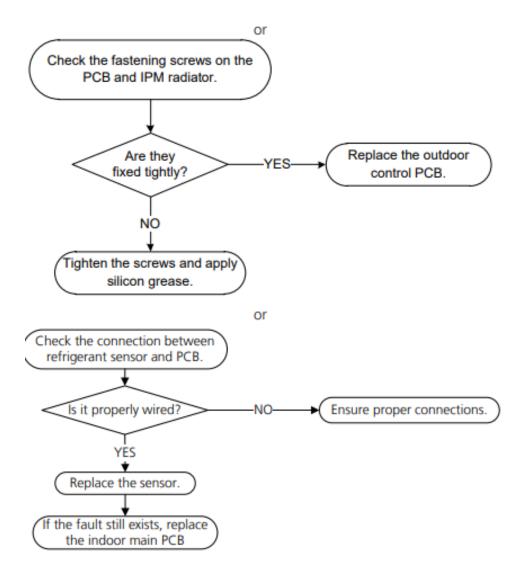
PC 0A: High temperature protection of condenser diagnosis and solution

Description: The unit will stop when condenser temperature is higher than 65°C, and runs again when it is less than 50°C.

Recommended parts to prepare:

- Connection wires
- Condenser temperature sensor
- Outdoor fan
- Outdoor main PCB
- Refrigerant

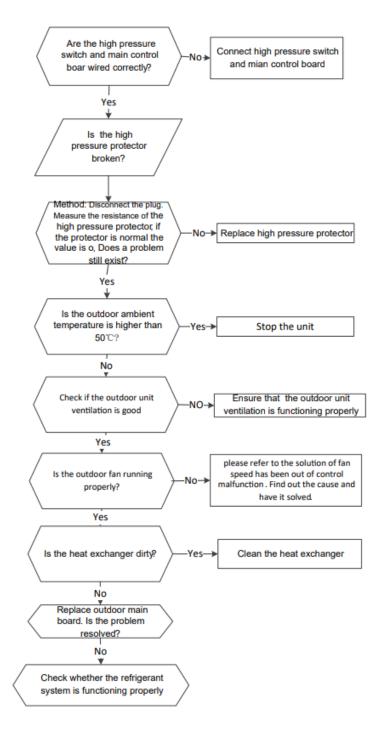



PC 02/ LC 06: Compressor top (or IPM) temp. protection/Refrigerant sensor error diagnosis and solution

Description: For some models with a overload protector, if the sampling voltage is not 5V, the LED will display the failure. If the temperature of the IPM module is higher than a certain value, the LED displays the failure code. Models without overload protector should be diagnosed according to the second flowchart.

Recommended parts to prepare:

- Connection wires
- Outdoor PCB
- IPM module board
- High pressure protector
- System blockages

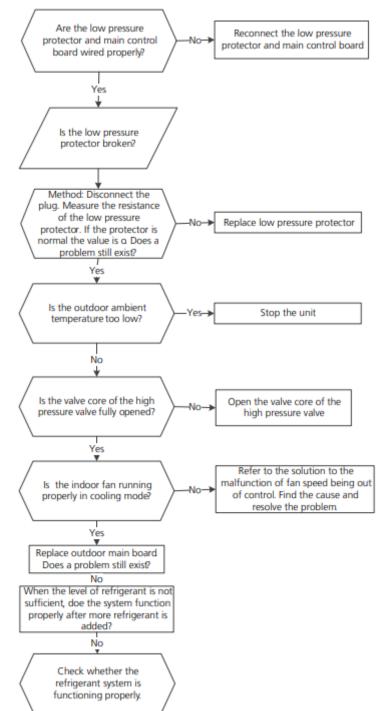


PC 30: System high pressure protection diagnosis and solution

Description: Outdoor pressure switch cuts off the system because pressure is higher than 638PSI (4.4MPa).

Recommended parts to prepare:

- Connection wires
- Pressure switch
- Outdoor fan
- Outdoor main PCB

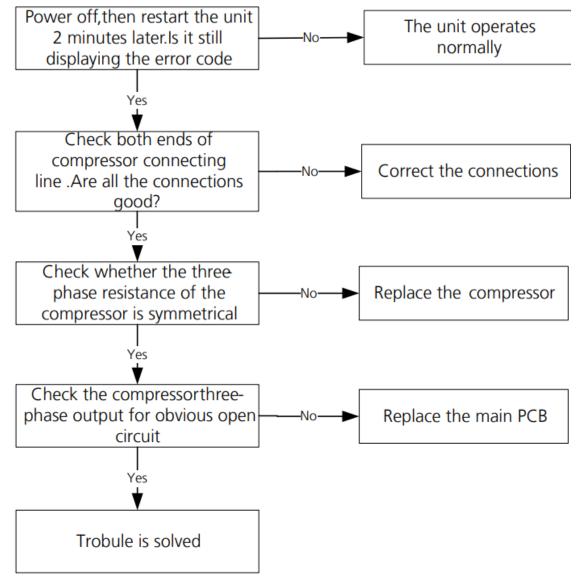

PC 31: System low pressure protection diagnosis and solution

Description: Outdoor pressure switch cut off the system because low pressure is lower than 18.85PSI (0.13MPa), the LED displays the failure code.

Recommended parts to prepare:

- Connection wires
- Outdoor PCB
- Low pressure protector
- Refrigerant

Troubleshooting and repair:

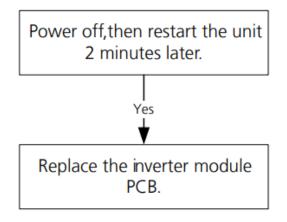

mrcool.com

PC 43: ODU compressor lack phase protection diagnosis and solution

Description: When the three-phase sampling current of the compressor is abnormal, especially when the current of one or more phases is always small and almost 0, the LED displays the failure code. **Recommended parts to prepare:**

Connection wires

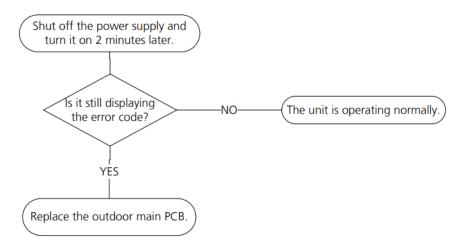
- Compressor
- Outdoor PCB


PC 45: ODU IR chip drive failure diagnosis and solution

Description: When the IR chip detects its own parameter error, the LED displays the failure code when power is on.

Recommended parts to prepare:

Inverter module PCB

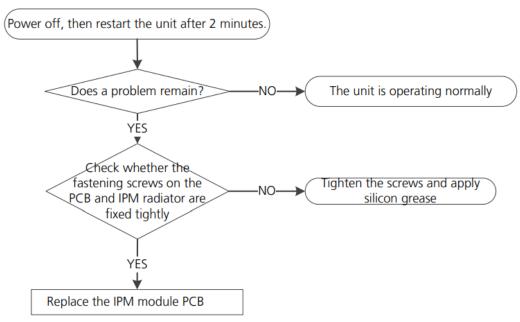

Troubleshooting and repair:

PC 41: Outdoor compressor current sampling circuit failure diagnosis and solution

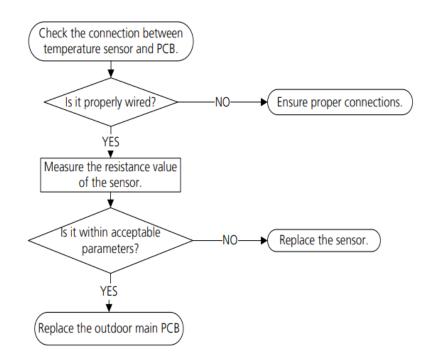
Description: Three-phase sampling offset voltage error, the static bias voltage is normally 2.5V. **Recommended parts to prepare:**

• Outdoor main PCB

4 TROUBLESHOOTING


EC 55: ODU IPM module temperature sensor malfunction diagnosis and solution

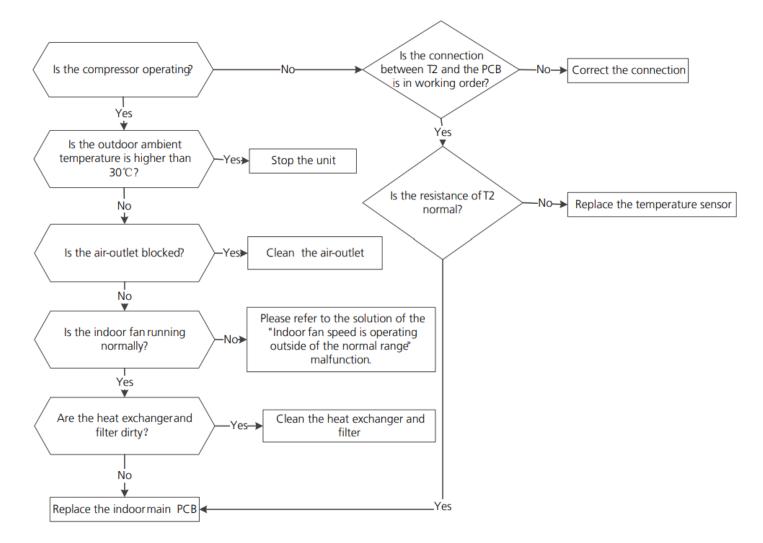
Description: If the sampling voltage is 0V or 5V, the LED displays the failure code.


Recommended parts to prepare:

- IPM module PCB
- Connection wires
- Sensors
- Outdoor main PCB

Troubleshooting and repair: If the radiator has no sensor, follow the steps below to resolve.

If the radiator has a sensor (TH), follow the steps below.

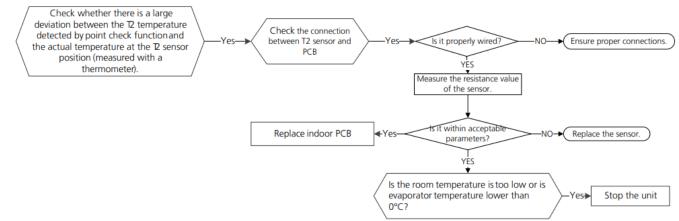

PH 90: High temperature protection of evaporator diagnosis and solution

Description: When evaporator coil temperature is more than 60°C in heating mode, the unit stops. It starts again only when the evaporator coil temperature is less than 52°C.

Recommended parts to prepare:

- Connection wires
- Evaporator coil temperature sensor (T2)
- Indoor fan
- Indoor main PCB

Troubleshooting and repair:

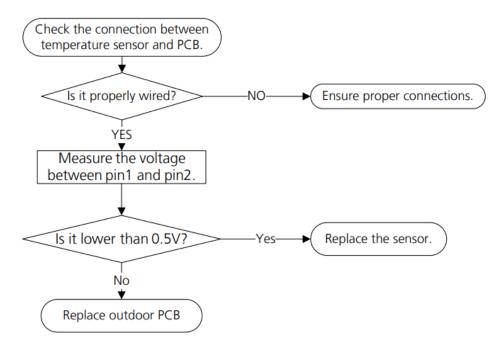


PH 91: Low temperature protection of evaporator diagnosis and solution

Description: When evaporator coil temperature is lower than 0°C in cooling mode or drying mode, the unit stops. It starts again only when the evaporator coil temperature is more than 5°C.

Recommended parts to prepare:

- Connection wires
- Evaporator coil temperature sensor (T2)
- Indoor main PCB

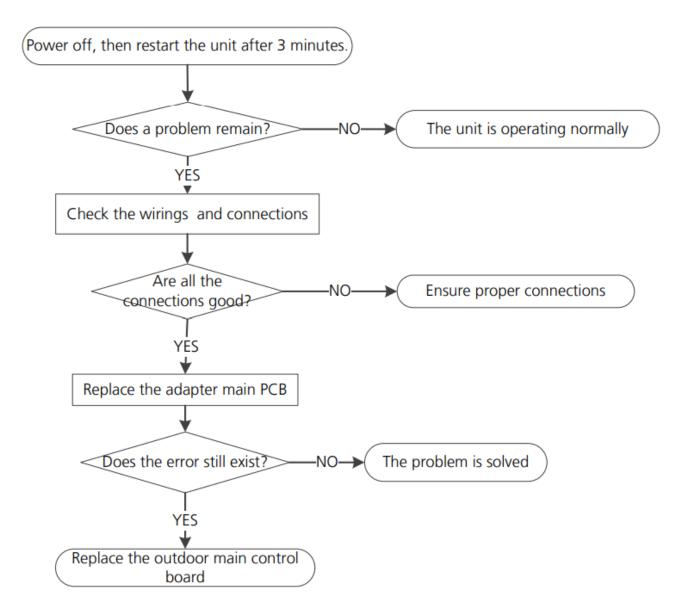

EC 5C: High pressure sensor is in open circuit or has short circuited diagnosis and solution

Description: If the sampling voltage is lower than 2V or higher than 254V, the LED displays the failure code.

Recommended parts to prepare:

- Connection wires
- Sensor
- Outdoor PCB

Troubleshooting and repair:


EL 16: Communication malfunction between adapter board and outdoor main board diagnosis and solution

Description: The adapter PCB cannot detect the main control board.

Recommended parts to prepare:

- Connection wires
- Adapter board
- Outdoor main PCB

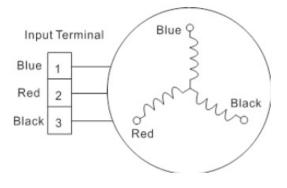
Troubleshooting and repair:

4.6 Check Procedures

WARNING

Be sure to turn off all power supplies or disconnect all wires to avoid electric shock. Operate only after the compressor and coil has returned to normal temperature in case of injury.

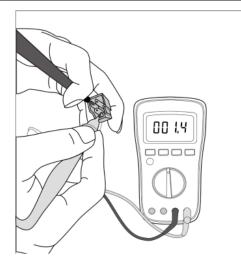
Temperature Sensor Check:


- 1. Disconnect the temperature sensor from the PCB.
- 2. Measure the resistance value of the sensor using a multi-meter.
- 3. Check corresponding temperature sensor resistance value table.

Note: The picture and the value are for reference only, actual condition and specific values may vary.

Compressor Check:

- 1. Disconnect the compressor power cord from the outdoor PCB.
- 2. Measure the resistance value of each winding using a multi-meter.
- 3. Check the resistance value of each winding in the following table.



4 TROUBLESHOOTING

Resistance Value	KSK103D33UEZ3	KSN140D58UFZ	KTF250D22UMT	KTN110D42UFZ	KTF420D62UNT
Blue-Red					
Blue-Black	2.13Ω	1.86Ω	0.75Ω	1.82Ω	0.86Ω
Red-Black					

Resistance Value	KTN150D30UFZA	KTM240D46UKT2	KTF310D43UMT	ETPQ420D1UMUA ETPQ440D1UMUB KTQ420D1UMU EKPQ440D1UMUB	MTH356UKRC8FQL
Blue-Red					
Blue-Black	1.02Ω	1.04Ω	0.65Ω	0.37Ω	0.487Ω
Red-Black					

Resistance Value	MTH550UKPC8FU		
Blue-Red			
Blue-Black	0.295Ω		
Red-Black			

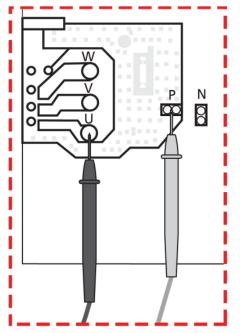
Note: The picture and the value are for reference only, actual condition and specific values may vary.

IPM Continuity Check:

WARNING

Electricity remains in capacitors even when the power supply is off. Ensure the capacitors are fully discharged before troubleshooting.

- 1. Turn off the outdoor unit and disconnect the power supply.
- 2. Discharge electronic capacitors and ensure all energy-storage units have been discharged.
- 3. Disassemble the outdoor PCB or disassemble the IPM board.
- 4. Measure the resistance value between P and U (U,W,N), U(V,W) and N.


Digital	Digital tester		Digital	Tester	Resistance Value
(+)Red	(-)Black		(+)Red	(-)Black	
	N	œ	U		∞
	U	1	V		
P	V	(Several Ω)	W	N	(Several Ω)
	W		-		

Or Test the Conductivity of IPM with Diode Mode:

Needle-ty	Needle-type Tester Normal Value Needle Red Black Red Red		Needle-Ty		
Red			Red	Black	Normal Value
	U			U	
Р	V	Open-Circuit	N	V	0.3-0.5V
	W]		W	

Needle-ty	pe Tester	NermalValue	Needle-Ty	Needle-Type Tester		
Red	Black	Normal Value	Red	Black	Normal Value	
	U			U		
P	V	0.3-0.5V	N	V	Open-Circuit	
	W			W		

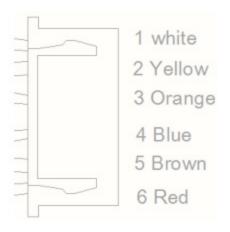
4 TROUBLESHOOTING

Note: The picture and the value are for reference only, actual condition and specific values may vary.

Normal voltage of P and N:

	208-230V (1-Phase)						
	In Standby						
Around 310VDC							
	In Operation						
With passive PFC module	With partial active PFC module	With fully active PFC module					
>200VDC	>310VDC	>370VDC					

Reactor Check:


Measure the resistance and voltage (to ground) of the reactor. The normal resistance should be around 0.1 ohm. Otherwise the reactor has an issue.

4-Way Valve Check:

- 1. Power on and use a digital tester to measure the voltage. When the unit operates in cooling it is 0V, when the unit operates in heating it is about equal to the power supply voltage. (If the value of the voltage is not in range, the PCB must have problems and needs to be replaced.)
- 2. Turn off the power, use a digital tester to measure the resistance. The value should be $1.8 \sim 2.5 K\Omega$.

EXV (EEV) Check:

- 1. Turn off outdoor unit and disconnect the power supply
- 2. Disconnect the connectors of EXV.
- 3. Measure the resistance value between Red and Blue(Yellow); Brown and Orange(White).

Resistance to EXV coil:

Color of Lead Winding	Normal Value
Red-Blue	
Red-Yellow	About 500
Brown-Orange	About 50Ω
Brown-White	

5.1 Temperature Sensor Resistance Value Table for TP (°C-K)

°C	°F	K Ohm	°C	°F	K Ohm	°C	°F	K Ohm	°C	°F	K Ohm
-20	-4	542.7	20	68	68.66	60	140	13.59	100	212	3.702
-19	-2	511.9	21	70	65.62	61	142	13.11	101	214	3.595
-18	0	483	22	72	62.73	62	144	12.65	102	216	3.492
-17	1	455.9	23	73	59.98	63	145	12.21	103	217	3.392
-16	3	430.5	24	75	57.37	64	147	11.79	104	219	3.296
-15	5	406.7	25	77	54.89	65	149	11.38	105	221	3.203
-14	7	384.3	26	79	52.53	66	151	10.99	106	223	3.113
-13	9	363.3	27	81	50.28	67	153	10.61	107	225	3.025
-12	10	343.6	28	82	48.14	68	154	10.25	108	226	2.941
-11	12	325.1	29	84	46.11	69	156	9.902	109	228	2.86
-10	14	307.7	30	86	44.17	70	158	9.569	110	230	2.781
-9	16	291.3	31	88	42.33	71	160	9.248	111	232	2.704
-8	18	275.9	32	90	40.57	72	162	8.94	112	234	2.63
-7	19	261.4	33	91	38.89	73	163	8.643	113	235	2.559
-6	21	247.8	34	93	37.3	74	165	8.358	114	237	2.489
-5	23	234.9	35	95	35.78	75	167	8.084	115	239	2.422
-4	25	222.8	36	97	34.32	76	169	7.82	116	241	2.357
-3	27	211.4	37	99	32.94	77	171	7.566	117	243	2.294
-2	28	200.7	38	100	31.62	78	172	7.321	118	244	2.233
-1	30	190.5	39	102	30.36	79	174	7.086	119	246	2.174
0	32	180.9	40	104	29.15	80	176	6.859	120	248	2.117
1	34	171.9	41	106	28	81	178	6.641	121	250	2.061
2	36	163.3	42	108	26.9	82	180	6.43	122	252	2.007
3	37	155.2	43	109	25.86	83	181	6.228	123	253	1.955
4	39	147.6	44	111	24.85	84	183	6.033	124	255	1.905
5	41	140.4	45	113	23.89	85	185	5.844	125	257	1.856
6	43	133.5	46	115	22.89	86	187	5.663	126	259	1.808
7	45	127.1	47	117	22.1	87	189	5.488	127	261	1.762
8	46	121	48	118	21.26	88	190	5.32	128	262	1.171
9	48	115.2	49	120	20.46	89	192	5.157	129	264	1.674
10	50	109.8	50	122	19.69	90	194	5	130	266	1.632
11	52	104.6	51	124	18.96	91	196	4.849			
12	54	99.69	52	126	18.26	92	198	4.703			
13	55	95.05	53	127	17.58	93	199	4.562			
14	57	90.66	54	129	16.94	94	201	4.426			
15	59	86.49	55	131	16.32	95	203	4.294			
16	61	82.54	56	133	15.73	96	205	4.167			
17	63	78.79	57	135	15.16	97	207	4.045			
18	64	75.24	58	136	14.62	98	208	3.927			
19	66	71.86	59	138	14.09	99	210	3.812			

Other Temperature Sensor Resistance Value Table (°C-K)

°C	°F	K Ohm	°C	°F	K Ohm	°C	°F	K Ohm	°C	°F	K Ohm
-20	-4	115.266	20	68	12.6431	60	140	2.35774	100	212	0.62973
-19	-2	108.146	21	70	12.0561	61	142	2.27249	101	214	0.61148
-18	0	101.517	22	72	11.5	62	144	2.19073	102	216	0.59386
-17	1	96.3423	23	73	10.9731	63	145	2.11241	103	217	0.57683
-16	3	89.5865	24	75	10.4736	64	147	2.03732	104	219	0.56038
-15	5	84.219	25	77	10	65	149	1.96532	105	221	0.54448
-14	7	79.311	26	79	9.55074	66	151	1.89627	106	223	0.52912
-13	9	74.536	27	81	9.12445	67	153	1.89627	107	225	0.51426
-12	10	70.1698	28	82	8.71983	68	154	1.83003	108	226	0.49989
-11	12	66.0898	29	84	8.3356	69	156	1.76647	109	228	0.486
-10	14	62.2756	30	86	7.97078	70	158	1.70547	110	230	0.47256
-9	16	58.7079	31	88	7.62411	71	160	1.64691	111	232	0.45957
-8	18	56.3694	32	90	7.29464	72	162	1.59068	112	234	0.44699
-7	19	52.2438	33	91	6.98142	73	163	1.53668	113	235	0.43482
-6	21	49.3161	34	93	6.68355	74	165	1.48481	114	237	0.42304
-5	23	46.5725	35	95	6.40021	75	167	1.43498	115	239	0.41164
-4	25	44	36	97	6.13059	76	169	1.38703	116	241	0.4006
-3	27	41.5878	37	99	5.87359	77	171	1.34105	117	243	0.38991
-2	28	39.8239	38	100	5.62961	78	172	1.29078	118	244	0.37956
-1	30	37.1988	39	102	5.3689	79	174	1.25423	119	246	0.36954
0	32	35.2024	40	104	5.17519	80	176	1.2133	120	248	0.35982
1	34	33.3269	41	106	4.96392	81	178	1.17393	121	250	0.35042
2	36	31.5635	42	108	4.76253	82	180	1.13604	122	252	0.3413
3	37	29.9058	43	109	4.5705	83	181	1.09958	123	253	0.33246
4	39	28.3459	44	111	4.38736	84	183	1.06448	124	255	0.3239
5	41	26.8778	45	113	4.21263	85	185	1.03069	125	257	0.31559
6	43	25.4954	46	115	4.04589	86	187	0.99815	126	259	0.30754
7	45	24.1932	47	117	3.88673	87	189	0.96681	127	261	0.29974
8	46	22.5662	48	118	3.73476	88	190	0.93662	128	262	0.29216
9	48	21.8094	49	120	3.58962	89	192	0.90753	129	264	0.28482
10	50	20.7184	50	122	3.45097	90	194	0.8795	130	266	0.2777
11	52	19.6891	51	124	3.31847	91	196	0.85248	131	268	0.27078
12	54	18.7177	52	126	3.19183	92	198	0.82643	132	270	0.26408
13	55	17.8005	53	127	3.07075	93	199	0.80132	133	271	0.25757
14	57	16.9341	54	129	2.95896	94	201	0.77709	134	273	0.25125
15	59	16.1156	55	131	2.84421	95	203	0.7537	135	275	0.24512
16	61	15.3418	56	133	2.73823	96	205	0.73119	136	277	0.23916
17	63	14.6181	57	135	2.63682	97	207	0.68844	137	279	0.23338
18	64	13.918	58	136	2.53973	98	208	0.66818	138	280	0.22776
19	66	13.2631	59	138	2.4467	99	210	0.64862	139	282	0.22231

6 SYSTEM PRESSURE TABLE

6.1 System Pressure Table-R454B

	Pressure		Tempe	rature	F	Pressure		Temper	ature
Кра	Bar	PSI	°C	°F	Кра	Bar	PSI	°C	°F
58.196	0.58	8.44	-60	-76	935.23	9.35	135.64	8	46.4
61.517	0.62	8.92	-59	-74.2	963.75	9.64	139.78	9	48.2
64.988	0.65	9.43	-58	-72.4	992.93	9.93	14401	10	50
68.615	0.69	9.95	-57	-70.6	1022.8	10.23	148.34	11	51.8
72.402	.072	10.50	-56	-68.8	1053.3	10.53	152.76	12	53.6
76.354	0.76	11.07	-55	-67	1084.5	10.85	157.29	13	55.4
80.478	0.80	11.67	-54	-65.2	1116.4	11.16	161.91	14	57.2
84.776	0.85	12.30	-53	-63.4	1149	11.49	166.64	15	59
89.256	0.89	12.95	-52	-61.6	1182.3	11.82	171.47	16	60.8
93.923	0.94	13.62	-51	-59.8	1216.3	12.16	176.40	17	62.6
98.781	0.99	14.33	-50	-58	1251.1	12.51	181.45	18	64.4
103.84	1.04	15.06	-49	-56.2	1286.6	12.87	186.60	19	66.2
109.1	1.09	15.82	-48	-54.4	1322.8	13.23	191.85	20	68
114.56	1.15	16.61	-47	-52.6	1359.9	13.60	197.23	21	69.8
120.25	1.20	17.44	-46	-50.8	1397.7	13.98	202.71	22	71.6
126.15	1.26	18.30	-45	-49	1436.3	14.36	208.31	23	73.4
132.28	1.32	19.18	-44	-47.2	1475.7	14.76	214.02	24	75.2
138.64	1.39	20.11	-43	-45.4	1515.9	15.16	219.85	25	77
145.24	1.45	21.06	-42	-43.6	1557	15.57	225.82	26	78.8
152.09	1.52	22.06	-41	-41.8	1598.9	15.99	231.89	27	80.6
159.18	1.59	23.09	-40	-40	1641.6	16.42	238.09	28	82.4
166.54	1.67	24.15	-39	-38.2	1685.2	16.85	244.41	29	84.2
174.15	1.74	25.26	-38	-36.4	1729.7	17.30	250.86	30	86
182.04	1.82	26.40	-37	-34.6	1775	17.75	257.43	31	87.8
190.2	1.90	27.59	-36	-32.8	1821.3	18.21	264.15	32	89.6
198.65	1.99	28.81	-35	-31	1868.4	18.68	270.98	33	91.4
207.39	2.07	30.08	-34	-29.2	1916.5	19.17	277.95	34	93.2
216.42	2.16	31.39	-33	-27.4	1965.6	19.66	285.08	35	95
225.76	2.26	32.74	-32	-25.6	2015.5	20.16	292.31	36	96.8
235.41	2.35	34.14	-31	-23.8	2066.5	20.67	299.71	37	98.6
245.37	2.45	35.59	-30	-22	2118.4	21.18	307.24	38	100.4
255.67	2.56	37.08	-29	-20.2	2171.3	21.71	314.19	39	102.2
266.29	2.66	38.62	-28	-18.4	2225.2	22.25	322.73	40	104
277.25	2.77	40.21	-27	-16.6	2280.2	22.80	330.70	41	105.8
288.56	2.89	41.85	-26	-14.8	2336.1	23.36	38.81	42	107.6
300.22	3.00	43.54	-25	-13	2393.2	23.93	347.09	43	109.4
312.24	3.12	45.28	-24	-11.2	2451.3	24.51	355.52	44	111.2
324.63	3.25	47.08	-23	-9.4	2510.4	25.10	364.09	45	113
337.39	3.37	48.93	-22	-7.6	2570.7	25.71	372.84	46	114.8
350.54	3.51	50.84	-21	-5.8	2632.1	26.32	381.74	47	116.6
364.08	3.64	52.80	-20	-4	2694.7	26.95	390.82	48	118.4
378.02	3.78	54.83	-19	-2.2	2758.33	27.58	400.04	49	120.2
392.37	3.92	56.91	-18	-0.4	2823.2	28.23	409.46	50	122
407.13	4.07	59.05	-17	1.4	2889.3	28.89	419.04	51	123.8

6 SYSTEM PRESSURE TABLE

System Pressure Table-R454B Cont.

	Pressure		Tempe	erature		Pressure		Temp	erature
Кра	Bar	PSI	°C	°F	Кра	Bar	PSI	°C	°F
422.31	4.22	61.25	-16	3.2	2956.5	29.57	428.79	52	125.6
437.92	4.38	63.5	-15	5	3025	30.25	438.72	53	127.4
453.98	4.54	65.84	-14	6.8	3094.7	30.95	448.83	54	129.2
470.47	4.70	68.23	-13	8.6	3165.7	31.66	459.13	55	131
487.43	4.87	70.69	-12	10.4	3238.1	32.38	469.63	56	132.8
504.84	5.05	73.22	-11	12.2	3311.7	33.12	480.30	57	134.6
522.73	5.23	75.81	-10	14	3386.7	33.87	491.18	58	136.4
541.1	5.41	78.48	-9	15.8	3463	34.63	502.25	59	138.2
559.95	5.60	81.21	-8	17.6	3540.7	35.41	513.52	60	140
579.31	5.79	84.02	-7	19.4	3619.9	36.20	525.00	61	141.8
599.16	5.99	86.90	-6	21.2	3700.5	37.01	536.69	62	143.6
619.54	6.20	89.85	-5	23	3782.7	37.83	548.61	63	145.4
640.43	6.40	92.88	-4	24.8	3866.3	38.66	560.74	64	147.2
661.86	6.62	95.99	-3	26.6	3951.5	39.52	573.10	65	149
683.82	6.84	99.18	-2	28.4	4038.3	40.38	585.69	66	450.28
706.34	7.06	102.44	-1	30.2	4126.8	41.27	598.52	67	152.6
729.41	7.29	105.79	0	32	4217	42.17	611.60	68	154.4
753.06	7.53	109.22	1	33.8	4309	43.09	624.95	69	156.2
777.28	7.77	112.73	2	35.6	4402.9	44.03	638.56	70	158
802.08	8.02	116.33	3	37.4	4498.7	44.99	652.46	71	159.8
827.47	8.27	120.01	4	39.2	4596.5	45.97	666.64	72	161.6
853.49	8.53	123.78	5	41	4696.5	46.97	681.15	73	163.4
880.11	8.80	127.64	6	42.8	4798.9	47.99	696.00	74	165.5
907.35	9.07	131.60	7	44.6	4904.1	49.04	711.25	75	167

VersaPro[®] & Hyper Heat Central Ducted

The design and specifications of this product and/or manual are subject to change without prior notice. Consult with the sales agency or manufacturer for details.